Skip to main content
Log in

Numerical Algorithm for Source Determination in a Diffusion–Logistic Model from Integral Data Based on Tensor Optimization

  • OPTIMAL CONTROL
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An algorithm has been developed for numerically solving the source determination problem in the model of information dissemination in synthetic online social networks, described by reaction–diffusion-type equations, using additional information about the process at fixed time points. The degree of ill-posedness of the source determination problem for a parabolic equation is studied based on the analysis of singular values of the linearized operator of the inverse problem. The algorithm developed is based on a combination of the tensor optimization method and gradient descent supplemented with the A.N. Tikhonov regularization. Numerical calculations demonstrate the smallest relative error in the reconstructed source obtained by the developed algorithm in comparison with classical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. B. N. Chetverushkin, V. P. Osipov, and V. I. Baluta, Preprint No. 43, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2018).

  2. F. Wang, H. Wang, K. Xu, J. Wu, and X. Jia, “Characterizing information diffusion in online social networks with linear diffusive model,” Proceedings of ICDCS (2013), pp. 307–316.

  3. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem,” Byull. Mosk. Gos. Univ. Mat. Mekh. 1 (6), 1–26 (1937).

    Google Scholar 

  4. V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).

    MATH  Google Scholar 

  5. D. I. Samokhvalov, “Machine learning-based malicious users' detection in the VKontakte social network,” Tr. Inst. Sist. Program. Ross. Akad. Nauk 32 (3), 109–117 (2020).

    Google Scholar 

  6. S. Kabanikhin, “Definitions and examples of inverse and ill-posed problems,” J. Inverse Ill-Posed Probl. 16 (4), 317–357 (2009).

    MathSciNet  MATH  Google Scholar 

  7. A. L. Bukhgeim and M. V. Klibanov, Dokl. Akad. Nauk SSSR 260 (2), 269–272 (1981).

    MathSciNet  Google Scholar 

  8. M. Yamamoto and J. Zou, “Simultaneous reconstruction of the initial temperature and heat radiative coefficient,” Inverse Probl. 17, 1181 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bellassoued and M. Yamamoto, “Inverse source problem for a transmission problem for a parabolic equation,” J. Inverse Ill-Posed Probl. 14 (1), 47–56 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Cristofol, J. Garnier, F. Hamel, and L. Roques, “Uniqueness from pointwise observations in a multi-parameter inverse problem,” Commun. Pure Appl. Anal. 11 (1), 173–188 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Isakov, Inverse Problems for Partial Differential Equations (Springer, New York, 2017).

    Book  MATH  Google Scholar 

  12. A. Hasanov, “Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach,” J. Math. Anal. Appl. 330 (2), 766–779 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Penenko and Z. Mukatova, “Inverse modeling of diffusion–reaction processes with image-type measurement data,” 11th International Multiconference Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB) (2018), pp. 39–43.

  14. B. Kaltenbacher and W. Rundell, “The inverse problem of reconstructing reaction–diffusion systems,” Inverse Probl. 36, 065011 (2020).

  15. T. E. Moiseev, E. E. Myshetskaya, and V. F. Tishkin, “On the closeness of solutions of unperturbed and hyperbolized heat equations with discontinuous initial data,” Dokl. Math. 98 (1), 391–395 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. N. Chetverushkin and O. G. Olkhovskaya, “Modeling of radiative heat conduction on high-performance computing systems,” Dokl. Math. 101 (2), 172–175 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. N. Tikhonov, “On stability of inverse problems,” Dokl. Akad. Nauk SSSR 39 (5), 195–198 (1943).

    MathSciNet  Google Scholar 

  18. A. N. Tikhonov, “On the dependence of solutions to differential equations on a small parameter,” Mat. Sb. 22 (2), 193–204 (1948).

    MathSciNet  Google Scholar 

  19. O. Krivorotko, T. Zvonareva, and N. Zyatkov, “Numerical solution of the inverse problem for diffusion-logistic model arising in online social networks,” Commun. Comput. Inf. Sci. 1476, 444–459 (2021).

    MathSciNet  Google Scholar 

  20. A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Regularizing Algorithms and a Priori Information (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  21. V. V. Zheltkova, D. A. Zheltkov, Z. Grossman, G. A. Bocharov, and E. E. Tyrtyshnikov, “Tensor based approach to the numerical treatment of the parameter estimation problems in mathematical immunology,” J. Inverse Ill-Posed Probl. 26 (1), 51–66 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. V. Oseledets and E. E. Tyrtyshnikov, “TT-cross approximation for multidimensional arrays,” Linear Algebra Appl. 432 (1), 70–88 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, “How to find a good submatrix,” in Matrix Methods: Theory, Algorithms, and Applications, Ed. by V. Olshevsky and E. Tyrtyshnikov (World Scientific, Singapore, 2010), pp. 247–256.

    Google Scholar 

  24. A. Mikhalev and I. Oseledets, “Rectangular maximum-volume submatrices and their applications,” Linear Algebra Appl. 538, 187–211 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  25. A. V. Gasnikov and Yu. E. Nesterov, “Universal method for stochastic composite optimization problems,” Comput. Math. Math. Phys. 58 (1), 48–64 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  26. T. A. Zvonareva and O. I. Krivorotko, “Comparative analysis of gradient methods for source identification in a diffusion-logistic model,” Comput. Math. Math. Phys. 62 (4), 674–684 (2022).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-71-10044-P) and the Mathematical Center in Akademgorodok (agreement with the Ministry of Science and Higher Education of the Russian Federation no. 075-15-2022-281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Krivorotko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvonareva, T.A., Kabanikhin, S.I. & Krivorotko, O.I. Numerical Algorithm for Source Determination in a Diffusion–Logistic Model from Integral Data Based on Tensor Optimization. Comput. Math. and Math. Phys. 63, 1654–1663 (2023). https://doi.org/10.1134/S0965542523090166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523090166

Keywords:

Navigation