Skip to main content
Log in

On the Set of Stable Matchings in a Bipartite Graph

  • INFORMATICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The topic of stable matchings (marriages) in bipartite graphs gained popularity beginning from the appearance of the classical Gale and Shapley work. In this paper, a detailed review of selected and other related statements in this field that describe structured, polyhedral, and algorithmic properties of such objects and their sets accompanied by short proofs is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” Am. Math. Monthly 69, 9–15 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Irving, “An efficient algorithm for the ‘stable roommates’ problem,” J. Algorithms 6, 577–595 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Tan, “A necessary and sufficient condition for the existence of a complete stable matching,” J. Algorithms 12, 154–178 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Baïou and M. Balinski, “Erratum: the stable allocation (or ordinal transportation) problem,” Math. Oper. Res. 27, 662–680 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. W. Irving and P. Leather, “The complexity of counting stable marriages,” SIAM J. Comput. 15, 655–667 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. McVitie and L. Wilson, “The stable marriage problem,” Commun. ACM 14, 486–492 (1971).

    Article  MathSciNet  Google Scholar 

  7. R. W. Irving, P. Leather, and D. Gusfield, “An efficient algorithm for the "optimal” stable marriage," J. ACM 34, 532–543 (1987).

    Article  MathSciNet  Google Scholar 

  8. J. Picard, “Maximum closure of a graph and applications to combinatorial problems,” Manage. Sci. 22, 1268–1272 (1976).

    Article  MATH  Google Scholar 

  9. J. Vande Vate, “Linear programming brings marital bliss,” Oper. Res. Lett. 8, 147–153 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. C.-P. Teo and J. Sethuraman, “The geometry of fractional stable matchings and its applications,” Math. Oper. Res. 23, 874–891 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. E. Knuth, Mariages Stables (Les Presses de l’Université de Montreal, Montreal, 1976).

    MATH  Google Scholar 

  12. A. Schrijver, Combinatorial Optimization, Vol. A (Springer, 2003).

    MATH  Google Scholar 

  13. D. McVitie and L. B. Wilson, “Stable marriage assignments for unequal sets,” BIT 10, 295–309 (1970).

    Article  MATH  Google Scholar 

  14. B. C. Dean and S. Munshi, “Faster algorithms for stable allocation problems,” Algorithmica 58, 59–81 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Mourtos and M. Samaris, “Stable allocations and partially ordered sets,” Discrete Optim. 46, 100731 (2022).

  16. D. Gusfield, “Three fast algorithms for four problems in stable marriage,” SIAM J. Comput. 16, 111–128 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Polya, and R. E. Tarjan, and D. R. Woods, Notes on Introductory Combinatorics (Birkhäuser, Boston, 1983).

    Book  MATH  Google Scholar 

  18. È. Tardos, “A strongly polynomial algorithm to solve combinatorial linear problems,” Oper. Res. 34, 250–256 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. V. Karzanov, “On closed sets of a directed graph,” USSR Comput. Math. Math. Phys. 24 (6), 197–200 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  20. U. G. Rothblum, “Characterization of stable matchings as extreme points of a polytope,” Math. Program. 54, 57–67 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. E. Roth, U. G. Rothblum, and J. H. Vande Vate, “Stable matching, optimal assignments and linear programming,” Math. Oper. Res. 18, 808–828 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  22. L. G. Valiant, “The complexity of computing the permanent,” Theor. Comput. Sci. 8, 189–201 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).

    MATH  Google Scholar 

  24. J. S. Provan and M. O. Ball, “The complexity of counting cuts and of computing the probability that a graph is connected,” SIAM J. Comput. 12, 777–788 (1983).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to the anonymous reviewer for the analysis of the initial version of this paper and useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Karzanov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karzanov, A.V. On the Set of Stable Matchings in a Bipartite Graph. Comput. Math. and Math. Phys. 63, 1540–1556 (2023). https://doi.org/10.1134/S0965542523080080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523080080

Keywords:

Navigation