Skip to main content
Log in

Mixed Virtual Element Approximation of a Fourth Order Optimal Control Problem

  • OPTIMAL CONTROL
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we study mixed virtual element methods for a distributed optimal control problem governed by a fourth order partial differential equation. By introducing an auxiliary variable, the fourth order equation can be transformed into systems of second order equations. A mixed virtual element discrete scheme for the optimal control problem is established. Moreover, a priori error estimates for auxiliary, state, adjoint state and control variable in \({{H}^{1}}\) and \({{L}^{2}}\) norms are derived. Finally, the theoretical finding is verified by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J. W. Zhou, J. Zhang, and X. Q. Xing, “Galerkin spectral approximations for optimal control problems governed by the fourth order equation with an integral constraint on state,” Comput. Math. Appl. 72 (10), 2549–2561 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  2. Z. Z. Tao and B. Sun, “Galerkin spectral method for a fourth-order optimal control problem with H 1-norm state constraint,” Comput. Math. Appl. 97, 1–17 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. P. Chen and J. W. Zhou, “Error estimates of spectral Legendre–Galerkin methods for the fourth-order equation in one dimension,” Appl. Math. Comput. 268, 1217–1226 (2015).

    MathSciNet  MATH  Google Scholar 

  4. W. D. Cao and D. P. Yang, “Ciarlet–Raviart mixed finite element approximation for an optimal control problem governed by the first bi-harmonic equation,” J. Comput. Appl. Math. 233 (2), 372–388 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. W. Zhou and D. P. Yang, “Spectral mixed Galerkin method for state constrained optimal control problem governed by the first bi-harmonic equation,” Int. J. Comput. Math. 88 (14), 2988–3011 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. T. L. Hou, “Error estimates of mixed finite element approximations for a class of fourth order elliptic control problems,” Bull. Korean Math. Soc. 50 (4), 1127–1144 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. L. Hou, “Error estimates of RT1 mixed methods for distributed optimal control problems,” Bull. Korean Math. Soc. 51 (1), 139–156 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Manickam and P. Prakash, “Mixed finite element methods for fourth order elliptic optimal control problems,” Numer. Math.: Theory, Methods Appl. 9 (4), 528–548 (2016).

    MATH  Google Scholar 

  9. Y. Shen and C. Jin, “Decoupled mixed element methods for fourth order elliptic optimal control problems with control constraints,” Numer. Math.: Theory, Methods Appl. 13 (2), 400–432 (2020).

    MATH  Google Scholar 

  10. L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, “Basic principles of virtual element methods,” Math. Models Methods Appl. Sci. 23 (01), 199–214 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Dassi and G. Vacca, “Bricks for the mixed high-order virtual element method: Projectors and differential operators,” Appl. Numer. Math. 155, 140–159 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Chinosi and L. D. Marini, “Virtual element method for fourth order problems: L 2-estimates,” Comput. Math. Appl. 72 (8), 1959–1967 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Beirão Da Veiga, F. Brezzi, L. D. Marini, and A. Russo, “Virtual element implementation for general elliptic equations,” Lect. Notes Comput. Sci. Eng. 114, 39–71 (2016).

  14. L. Beirão Da Veiga, F. Brezzi, L. D. Marini, and A. Russo, “The hitchhiker’s guide to the virtual element method,” Math. Models Methods Appl. Sci. 24 (8), 1541–1573 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo, “Equivalent projectors for virtual element methods,” Comput. Math. Appl. 66 (3), 376–391 (2013).

    MathSciNet  MATH  Google Scholar 

  16. S. C. Brenner, Q. Guan, and L. Y. Sung, “Some estimates for virtual element methods,” Comput. Methods A-ppl. Math. 17 (4), 553–574 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. C. Brenner, L. Y. Sung, and Z. Tan, “A C 1 virtual element method for an elliptic distributed optimal control problem with pointwise state constraints,” Math. Models Methods Appl. Sci. 31 (14), 2887–2906 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  18. Q. M. Wang and Z. J. Zhou, “A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem,” Numer. Algorithms 90 (3), 989–1015 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  19. Q. M. Wang and Z. J. Zhou, “Adaptive virtual element method for optimal control problem governed by general elliptic equation,” J. Sci. Comput. 88 (1), 1–33 (2021).

    Article  MathSciNet  Google Scholar 

  20. M. Hinze, “A variational discretization concept in control constrained optimization: The linear-quadratic case,” Comput. Optim. Appl. 30 (1), 45–61 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. A. Adams and J. J. F. Fournier, Sobolev Spaces (Elsevier, Amsterdam, 2003).

    MATH  Google Scholar 

  22. F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications (Am. Math. Soc., Providence, R.I., 2010).

    MATH  Google Scholar 

  23. A. Cangiani, G. Manzini, and O. J. Sutton, “Conforming and nonconforming virtual element methods for elliptic problems,” IMA J. Numer. Anal. 37 (3), 1317–1354 (2017).

    MathSciNet  MATH  Google Scholar 

  24. P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  25. C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, “Polymesher: A general-purpose mesh generator for polygonal elements written in Matlab,” Struct. Multidiscip. Optim. 45 (3), 309–328 (2012).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Zhaojie Zhou was supported by the National Natural Science Foundation of China under Grant nos. 11971276, 12171287. Yue Shen was supported by the Natural Science Foundation of Shanxi Province (Grant no. 2021JQ-492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojie Zhou.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Shen, Y. & Zhou, Z. Mixed Virtual Element Approximation of a Fourth Order Optimal Control Problem. Comput. Math. and Math. Phys. 63, 1001–1015 (2023). https://doi.org/10.1134/S0965542523060180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523060180

Keywords:

Navigation