Skip to main content
Log in

On Critical Exponents for Weak Solutions of the Cauchy Problem for a (2 + 1)-Dimensional Nonlinear Composite-Type Equation with Gradient Nonlinearity

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Cauchy problem for a model nonlinear equation with gradient nonlinearity is considered. We prove the existence of two critical exponents, \({{q}_{1}} = 2\) and \({{q}_{2}} = 3\), such that this problem has no local-in-time weak (in some sense) solution for \(1 < q\;\leqslant \;{{q}_{1}}\), while such a solution exists for \(q > {{q}_{1}}\), but, for \({{q}_{1}} < q\;\leqslant \;{{q}_{2}}\), there is no global-in-time weak solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. G. A. Bagdoev, V. I. Erofeev, and A. V. Shekoyan, Linear and Nonlinear Waves in Dispersive Continuous Media (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  2. G. A. Sviridyuk, “On the general theory of operator semigroups,” Russ. Math. Surv. 49 (4), 45–74 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. A. Zagrebina, “Initial-boundary value problem for Sobolev-type equations with a strongly (L, p)-radial operator,” Mat. Zametki Yaroslav. Gos. Univ. 19 (2), 39–48 (2012).

    MATH  Google Scholar 

  4. A. A. Zamyshlyaeva and G. A. Sviridyuk, “Nonclassical equations of mathematical physics: Linear Sobolev type equations of higher order,” Vestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Phys. 8 (4), 5–16 (2016).

    MATH  Google Scholar 

  5. B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid,” Math. USSR Sb. 37 (4), 559–579 (1979).

    Article  MATH  Google Scholar 

  6. S. A. Gabov and A. G. Sveshnikov, Linear Problems in the Theory of Unsteady Internal Waves (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  7. S. A. Gabov, New Problems in the Mathematical Theory of Waves (Fizmatlit, Moscow, 1998) [in Russian].

    Google Scholar 

  8. Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial boundary value problems,” Comput. Math. Math. Phys. 32 (12), 1715–1728 (1992).

    MathSciNet  Google Scholar 

  9. E. L. Mitidieri and S. I. Pohozaev, “A priori estimates and blow-up of solutions to partial differential equations and inequalities,” Proc. Steklov Inst. Math. 234, 1–362 (2001).

    MATH  Google Scholar 

  10. E. I. Galakhov, “Some nonexistence results for quasilinear elliptic problems,” J. Math. Anal. Appl. 252 (1), 256–277 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. I. Galakhov and O. A. Salieva, “On the blow-up of nonnegative monotone solutions of some noncoercive inequalities in a half-space,” Sovrem. Mat. Fundam. Napravl. 63 (4), 573–585 (2017).

    Google Scholar 

  12. M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of nonlinear equations of Sobolev type,” Izv. Math. 79 (5), 955–1012 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. O. Korpusov, “Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type,” Theor. Math. Phys. 194 (3), 347–359 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. O. Korpusov, A. V. Ovchinnikov, and A. A. Panin, “Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field,” Math. Methods Appl. Sci. 41 (17), 8070–8099 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. O. Korpusov and A. A. Panin, “Instantaneous blow-up versus local solubility of the Cauchy problem for a two-dimensional equation of a semiconductor with heating,” Izv. Math. 83 (6), 1174–1200 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. O. Korpusov and A. K. Matveeva, “On critical exponents for weak solutions of the Cauchy problem for a nonlinear equation of composite type,” Izv. Math. 85 (4), 705–744 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Foundation for Advancement of Theoretical Physics and Mathematics “BASIS” and by the Russian Science Foundation (project no. 23-11-00056), RUDN University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. O. Korpusov or A. K. Matveeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korpusov, M.O., Matveeva, A.K. On Critical Exponents for Weak Solutions of the Cauchy Problem for a (2 + 1)-Dimensional Nonlinear Composite-Type Equation with Gradient Nonlinearity. Comput. Math. and Math. Phys. 63, 1070–1084 (2023). https://doi.org/10.1134/S096554252306012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554252306012X

Keywords:

Navigation