Skip to main content
Log in

Data Assimilation for the Two-Dimensional Ambipolar Diffusion Equation in Earth’s Ionosphere Model

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The problem of variational data assimilation for the INM RAS two-dimensional diffusion model of the Earth’s ionosphere F region is considered. Total integral electron contents along given paths are used as observation data. The general statement of the problem in differential form is formulated, and its solvability is analyzed. Based on a regularized statement, an iterative algorithm for solving the assimilation problem is constructed, and its convergence is demonstrated. A finite-dimensional approximation is constructed, the numerical solution of the problem is implemented, and the stability and convergence of the difference scheme are proved. The quality of the reconstruction of electron concentration fields is examined in test numerical experiments. It is shown that a weakly perturbed solution is reconstructed with acceptable accuracy for both stationary and evolutionary statements in the case of vertical and slant integration paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. http://www.ips.gov.au/Satellite/2/1

REFERENCES

  1. K. Davies, Ionospheric Radio Waves Blaisdell, Waltham, 1969).

    Google Scholar 

  2. G. S. Ivanov-Kholodnyi and G. M. Nikol’skii, The Sun and the Ionosphere: Short-Wave Solar Radiation and Its Impact on the Ionosphere (Nauka, Moscow, 1969) [in Russian].

  3. M. C. Kelley, The Earth’s Ionosphere (Academic, New York, 1989).

    Google Scholar 

  4. M. G. Deminov, G. F. Deminova, G. A. Zherebtsov, and N. M. Polekh, “Statistical properties of variability of the quiet ionosphere F2-layer maximum parameters over Irkutsk under low solar activity,” Adv. Space Res. 51 (5), 702–711 (2011).

    Article  Google Scholar 

  5. K. G. Ratovsky, A. V. Medvedev, and M. V. Tolstikov, “Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data,” Adv. Space Res. 55 (8), 2041–2047 (2015).

    Article  Google Scholar 

  6. A. Miller, H. Schmidt, and F. Bunzel, “Vertical coupling of the middle atmosphere during sudden stratospheric warming events,” J. Atmos. Sol.-Terr. Phys. 97, 11–21 (2013).

    Article  Google Scholar 

  7. E. Yigit, P. Koucki Knizova, K. Georgieva, and W. Ward, “A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity,” J. A-tmos. Sol.-Terr. Phys. 141, 1–12 (2016).

    Article  Google Scholar 

  8. N. M. Pedatella et al., “Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming,” J. Geophys. Res.: Space Phys. 121 (7), 7204–7225 (2016).

    Article  Google Scholar 

  9. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Mathematical simulation of earth system dynamics,” Izv. Atmos. Oceanic Phys. 51 (3), 227–240 (2015).

    Article  Google Scholar 

  10. D. V. Kulyamin and E. M. Volodin, “INM RAS coupled atmosphere–ionosphere general circulation model INMAIM (0–130 km),” Russ. J. Numer. Anal. Math. Model. 33 (6), 351–357 (2018).

    Article  MATH  MathSciNet  Google Scholar 

  11. D. V. Kulyamin and V. P. Dymnikov, “Modeling of the lower ionosphere climate,” Izv. Atmos. Oceanic Phys. 51 (3), 272–291 (2015). 317–337.

  12. D. V. Kulyamin and V. P. Dymnikov, “Numerical modelling of coupled neutral atmospheric general circulation and ionosphere D region,” Russ. J. Numer. Anal. Math. Model. 31 (3), 159–171 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  13. D. V. Kulyamin, V. Ya. Galin, and A. I. Pogoreltsev, “The thermosphere general circulation modeling with the parametrization of radiative processes,” Russ Meteorol. Hydrol. 40, 392–399 (2015).

    Article  Google Scholar 

  14. D. V. Kulyamin, P. A. Ostanin, and V. P. Dymnikov, “Modeling the F-layer of the Earth’s ionosphere: Solving ambipolar diffusion equations,” Mat. Model. 31 (4), 57–74 (2019).

    MATH  Google Scholar 

  15. V. P. Dymnikov, D. V. Kulyamin, and P. A. Ostanin, “Coupled Earth’s thermosphere–ionosphere global dynamics model,” Izv. Atmos. Oceanic Phys. 56 (3), 241–252 (2020).

    Article  Google Scholar 

  16. B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, Global Navigation Satellite Systems: GPS, GLONASS, Galileo and More (Springer, New York, 2008).

    Google Scholar 

  17. B. W. Parkinson, P. Enge, P. Axelrad, and J. J. Spilker, Jr., Global Positioning System: Theory and Applications (Am. Inst. Aeronautics Astronautics, 1996).

  18. Global Navigation Satellite System GLONASS: Interface Control Document (Moscow, 1995).

  19. E. L. Afraimovich, E. I. Astafyeva, V. V. Demyanov, I. K. Edemskiy, N. S. Gavrilyuk, A. B. Ishin, et al., “A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena,” J. Space Weather Space Clim. A 3 (27) (2013).

  20. W. Rideout and A. Coster, “Automated GPS processing for global total electron content data,” GPS Solutions 10 (3), 219–228 (2006). https://doi.org/10.1007/s10291-006-0029-5

    Article  Google Scholar 

  21. C. Brunini, A. Meza, F. Azpilicueta, M. A. V. Zele, M. Gende, and A. Daz, “A new ionosphere monitoring technology based on GPS,” Astrophys. Space Sci. 290, 415–429 (2004).

    Article  Google Scholar 

  22. K. Bibl, “Evolution of the ionosonde,” Ann. Geophys. 41 (5–6), 667–680 (1998).

    Article  Google Scholar 

  23. B. W. Reinisch and I. A. Galkin, “Global ionospheric radio observatory (GIRO),” Earth Planets Space 63, 377–381 (2011). https://doi.org/10.5047/eps.2011.03.001

    Article  Google Scholar 

  24. R. W. Schunk, L. Scherliess, J. J. Sojka, D. C. Thompson, D. N. Anderson, M. Codrescu, C. Minter, T. J. Fuller-Rowell, R. A. Heelis, M. Hairston, and B. Howe, “Global assimilation of ionospheric measurements (GAIM),” Radio Sci. 39, RS1S02 (2004). https://doi.org/10.1029/2002RS002794

  25. C. Wang, G. Hajj, X. Pi, I. G. Rosen, and B. Wilson, “Development of the global assimilative ionospheric model,” Radio Sci. 39, RS1S06 (2004). https://doi.org/10.1029/2002RS002854

  26. R. Dear and C. Mitchell, “GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe,” Radio Sci. 41, RS6007 (2006). https://doi.org/10.1029/2005RS003269

  27. M. Angling, J. Shaw, A. Shukla, and P. Cannon, “Development of an HF selection tool based on the Electron Density Assimilative Model near-real-time ionosphere,” Radio Sci. 44, RS0A13 (2009). https://doi.org/10.1029/2008RS004022

  28. T. Fuller-Rowell et al., “US-TEC: A new data assimilation product from the space environment center characterizing the ionospheric total electron content using real-time GPS data,” Radio Sci. 41, RS6003 (2006). https://doi.org/10.1029/2005RS003393

  29. B. Khattatov et al., “Ionospheric nowcasting via assimilation of GPS measurements of ionospheric electron content in a global physics-based time-dependent model,” Q. J. R. Meteorol. Soc. 131, 3543–3559 (2005).

    Article  Google Scholar 

  30. P. A. Ostanin, D. V. Kulyamin, and V. P. Dymnikov, “Numerical modelling of the Earth’s ionosphere F region,” IOP Conf. Ser.: Earth Environ. Sci. 96 (1), 012011 (2017).

  31. P. A. Ostanin, “On the approximation of the diffusion operator in the ionosphere model with conserving the direction of geomagnetic field,” Russ. J. Numer. Anal. Math. Model. 37 (1), 25–39 (2022).

    Article  MATH  MathSciNet  Google Scholar 

  32. J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles (Gauthier-Villars, Paris, 1968).

    MATH  Google Scholar 

  33. V. P. Shutyaev, Control Operators and Iterative Algorithms in Variational Data Assimilation (Nauka, Moscow, 2001) [in Russian].

    Book  MATH  Google Scholar 

  34. V. I. Agoshkov, Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics (Inst. V-ychisl. Mat. Ross. Akad. Nauk, Moscow, 2016) [in Russian].

    Google Scholar 

  35. E. I. Parmuzin and V. P. Shutyaev, “Algorithms for solving a problem of data assimilation,” Comput. Math. Math. Phys. 37 (7), 792–803 (1997).

    MATH  MathSciNet  Google Scholar 

  36. R. W. Schunk and A. F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Univ. Press, New York, US, 2009).

    Book  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-286) and by the Russian Science Foundation (project no. 20-11-20057, research in Section 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Ostanin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dymnikov, V.P., Kulyamin, D.V., Ostanin, P.A. et al. Data Assimilation for the Two-Dimensional Ambipolar Diffusion Equation in Earth’s Ionosphere Model. Comput. Math. and Math. Phys. 63, 845–867 (2023). https://doi.org/10.1134/S0965542523050093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523050093

Keywords:

Navigation