Skip to main content
Log in

Numerical Study of Instability of Medium Interface During Thermonuclear Combustion of a Cylindrical Shelled Microtarget

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The study is limited to two-dimensional disturbances of the interface between media. A computational technology based on the explicit interface separation in the form of one of the lines of a regular grid is used. A method for visualizing spontaneous disturbances at an early stage when they cannot yet be seen on the interface profile is proposed. It is shown that the computer rounding error plays an insignificant role in their formation. For the late stage of the disturbance development, a method for obtaining the profile of the local oscillation amplitude along the interface is proposed. The features of spontaneous disturbance at different stages of its development are studied. It is shown that the spontaneous disturbance tends to grid convergence, at least until the beginning of the process of formation of a quasi-stationary shockless combustion wave. It is shown that during the formation of a quasi-stationary wave and its subsequent motion, an additional spontaneous disturbance arises. The interaction of a specified sinusoidal disturbance having an initial amplitude of up to 0.1 of the wavelength with a quasi-stationary combustion wave is studied. It is shown that the Kelvin–Helmholtz instability is the main mechanism for the development of instability at the nonlinear stage. The combustion wave is not destroyed. The profiles of the oscillation amplitude of the given disturbance are obtained, from which it is possible to extract the universal time-independent part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. I. G. Lebo and V. F. Tishkin, A Study of Hydrodynamic Instability in Problems of Laser Thermonuclear Fusion Using Mathematical Modelling (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  2. N. V. Zmitrenko, P. A. Kuchugov, M. E. Ladonkina, and V. F. Tishkin, “Simulation of the Kelvin–Helmholtz instability in problems of physics of high energy densities,” Nauchn. Vizualizatsiya 12 (1), 103–111 (2020). https://doi.org/10.26583/sv.12.1.09

    Article  Google Scholar 

  3. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, et al., “Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse,” J. Exp. Theor. Phys. 124, 341–351 (2017). https://doi.org/10.1134/S1063776117010113

    Article  Google Scholar 

  4. S. Yu. Gus’kov, N. N. Demchenko, N. V. Zmitrenko, et al., “Compression and burning of a thermonuclear target upon shock ignition under the conditions of laser beam irradiation symmetry violation,” J. Exp. Theor. Phys. 150 (5), 748–758 (2020). https://doi.org/10.1134/S1063776120030140

    Article  Google Scholar 

  5. G. V. Dolgoleva and I. G. Lebo, “On the issue of neutron source development for a laser-driven nuclear–thermonuclear reactor, " Quantum Electron. 49 (8), 796–800 (2019). https://doi.org/10.1070/QEL16953

    Article  Google Scholar 

  6. G. V. Dolgoleva, A. I. Lebo, and I. G. Lebo, “Simulation of a thermonuclear target drive at the 1 MJ laser energy level,” Math. Models Comput. Simul. 8 (4), 438–445 (2016). https://doi.org/10.1134/S2070048216040062

    Article  MATH  Google Scholar 

  7. V. F. Tishkin, V. A. Gasilov, N. V. Zmitrenko, et al., “Modern methods of mathematical modeling of the development of hydrodynamic instabilities and turbulent mixing,” Math. Models Comput. Simul. 13 (2), 311–327 (2021).https://doi.org/10.1134/S2070048221020174

    Article  MathSciNet  Google Scholar 

  8. E. N. Avrorin, A. A. Bunatyan, A. D. Gadzhiev, et al., “Numerical calculations on fusion detonation in a dense plasma,” Sov. J. Plasma Phys. 10 (3), 298–303 (1984).

    Google Scholar 

  9. M. M. Basko, M. D. Churazov, and A. G. Aksenov, “Prospects of heavy ion fusion in cylindrical geometry,” Laser Part. Beams 20, 411–414 (2002). https://doi.org/10.1017/S0263034602203080

    Article  Google Scholar 

  10. V. V. Vatulin and O. A. Vinokurov, “Fast ignition of the DT Fuel in the cylindrical channel by heavy ion beams,” Laser Part. Beams 20, 415–418 (2002). https://doi.org/10.1017/S0263034602203092

    Article  Google Scholar 

  11. R. Ramis and J. Meyer-ter-Vehn, “On thermonuclear burn propagation in a pre-compressed cylindrical DT target ignited by a heavy ion beam pulse,” Laser Part. Beams 32, 41–47 (2014). https://doi.org/10.1017/S0263034613000839

    Article  Google Scholar 

  12. N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, “Thermonuclear gain of ICF targets with direct heating of ignitor,” J. Sov. Laser Res. 13 (5), 396–399 (1992). https://doi.org/10.1007/BF01124892

    Article  Google Scholar 

  13. M. Tabak, J. Hammer, M. E. Glinsky, et al., “Ignition and high gain with ultrapowerful lasers,” Phys. Plasm. 1, 1626–1634 (1994). https://doi.org/10.1063/1.870664

    Article  Google Scholar 

  14. A. A. Frolova, K. V. Khishchenko, and A. A. Charakhch’yan, “Fast ignition by a proton beam and burning of a DT cylindrical shell target,” Plasma Phys. Rep. 45, 830–649 (2019). https://doi.org/10.1134/S1063780X1908004X

    Article  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, Oxford, 1987).

    Google Scholar 

  16. L. P. Feoktistov, “Thermonuclear detonation,” Phys. Usp. 41, 1139-1147 (1998). https://doi.org/10.1070/PU1998v041n11ABEH000506

    Article  Google Scholar 

  17. K. V. Khishchenko and A. A. Charakhch’yan, “Reflection of detonation wave from the symmetry plane within a cylindrical target for controlled thermonuclear fusion,” Comput. Math. Math. Phys. 61 (10), 1682–1699 (2021). https://doi.org/10.1134/S0965542521100055

    Article  MathSciNet  MATH  Google Scholar 

  18. R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13, 297–319 (1960). https://doi.org/10.1002/cpa.3160130207

    Article  MathSciNet  Google Scholar 

  19. P. G. Drazin, Introduction to Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 2002).

    Book  MATH  Google Scholar 

  20. A. A. Vasil’ev and A. V. Trotsyuk, “Experimental investigation and numerical simulation of an expanding multifront detonation wave,” Combust. Explosion Shock Waves 39 (1), 80–90 (2003). https://doi.org/10.1023/A:1022157504636

    Article  Google Scholar 

  21. A. A. Charakhch’yan, “Richtmyer–Meshkov instability of the interface between two media due to passage of two successive shocks,” J. Appl. Mech. Tech. Phys 41(1), 23–31, (2000).

    Article  MATH  Google Scholar 

  22. A. A. Charakhch’yan, “Reshocking at the non-linear stage of Richtmyer–Meshkov instability,” Plasma Phys. Controlled Fusion 43, 1169–1179 (2001). https://doi.org/10.1088/0741-3335/43/9/301

    Article  Google Scholar 

  23. O. Schilling, M. Latini, and M. S. Don, “Erratum: Physics of reshock and mixing in single-mode Richtmyer–Meshkov instability [Phys. Rev. E 76, 026319 (2007)],” Phys. Rev. E 85, 049904 (2012). https://doi.org/10.1103/PhysRevE.85.049904

  24. N. V. Fedorenko, “Ionization in collisions between ions and atoms,” Sov. Phys. Usp., No. 2, 526–546 (1959). https://doi.org/10.1070/PU1959v002n04ABEH003145

  25. K. V. Khishchenko, “Equations of state for two alkali metals at high temperatures,” J. Phys.: Conf. Ser. 98, 032023 (2008). https://doi.org/10.1088/1742-6596/98/3/032023

  26. A. A. Charakhch’yan and K. V. Khishchenko, “Plane thermonuclear detonation waves initiated by proton beams and quasi-one-dimensional model of fast ignition,” Laser Particle Beams 33, 65–80 (2015). https://doi.org/10.1017/S0263034614000780

    Article  Google Scholar 

  27. N. N. Kalitkin, “The Thomas–Fermi model of the atom with quantum and exchange corrections,” Sov. Phys. JETP. 11 (5), 1106–1110 (1960).

    MathSciNet  Google Scholar 

  28. N. N. Kalitkin and L. V. Kuz’mina, “Table of thermodynamic functions of matter at high energy concentration,” Preprint of the Keldysh Inst. Applied Math., USSR Academy of Sciences, Moscow, 1976, preprint no. 14.

  29. W. B. Holzapfel, “Equation of state for Cu, Ag, and Au and problems with shock wave reduced isotherms,” High Pressure Res. 30, 372–394 (2010). https://doi.org/10.1080/08957959.2010.494845

    Article  Google Scholar 

  30. M. M. Basko, “Model of diffusive energy transport by charged products of fusion reactions,” Sov. J. Plasma Phys. 13 (8), 558–561 (1987).

    Google Scholar 

  31. C. W. Hirt, A. A. Amsden, and J. L. Cook, “An arbitrary Lagrangian–Eulerian computing method for all flow speeds,” J. Comput. Phys. 14 (3), 227–253 (1974). https://doi.org/10.1016/0021-9991(74)90051-5

    Article  MATH  Google Scholar 

  32. B. Van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32 (1), 101–136 (1979). https://doi.org/10.1016/0021-9991(79)90145-1

    Article  MATH  Google Scholar 

  33. A. V. Rodionov, “Methods of increasing the accuracy in Godunov’s scheme,” USSR J. Comput. Math. Math. Phys. 27 (6), 164–169 (1987).

    Article  MATH  Google Scholar 

  34. P. Colella and P. R. Woodward, “The piecewise parabolic method (PPM) for gas-dynamical simulations,” J. Comput. Phys. 54, 174–201 (1984). https://doi.org/10.1016/0021-9991(84)90143-8

    Article  MATH  Google Scholar 

  35. A. A. Charakhch’yan, “Calculation of the compression of deuterium in a conical target in the framework of the Navier–Stokes equations for two-temperature magnetic hydrodynamics,” Comput. Maths Math. Phys. 33 (5), 683–697 (1993).

    Google Scholar 

  36. C. De Boor, A Practical Guide to Splines (Springer, New York, 1978).

    Book  MATH  Google Scholar 

  37. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Fluid Dynamics Problems (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  38. V. I. Gryn’, A. A. Frolova, and A. A. Charakhch’yan, “A barrier-type grid generator and its application in flow computations with moving boundaries,” Comput. Math. Math. Phys. 43 (6), 863–869 (2003).

    MathSciNet  MATH  Google Scholar 

  39. A. A. Charakhch’yan and S. A. Ivanenko, “A variational form of the Winslow grid generator,” J. Comput. Phys. 136, 385–398 (1997). https://doi.org/10.1006/jcph.1997.5750

    Article  MathSciNet  MATH  Google Scholar 

  40. S. A. Ivanenko, “Generation of non-degenerate meshes,” USSR J. Comput. Math. Math. Phys. 28 (6), 141–146 (1988).

    Article  MATH  Google Scholar 

  41. K. A. Meyer and P. J. Blewett, “Numerical investigation of the stability of a shock-accelerated interface between two fluids,” Phys. Fluids 15 (5), 753–759 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. V. Khishchenko or A. A. Charakhch’yan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khishchenko, K.V., Charakhch’yan, A.A. Numerical Study of Instability of Medium Interface During Thermonuclear Combustion of a Cylindrical Shelled Microtarget. Comput. Math. and Math. Phys. 63, 644–658 (2023). https://doi.org/10.1134/S0965542523040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523040085

Keywords:

Navigation