Skip to main content
Log in

Influence of the Shock Wave Intensity on Instability Development at Rough Interfaces of a Three-Layer Gas System

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The influence exerted by the intensity of a shock wave transmitted through rough interfaces on instability development in a three-layer gas system at Mach numbers M = 1.3 and M = 3 is studied. The three-layer system is obtained by placing two thin films (interfaces) across a shock tube. A heavy gas (sulfur hexafluoride) occupies the space between the interfaces (the central layer of the system), while the spaces to the left and right of the central layer are filled with air. The initial roughness of the interfaces is specified as a two-mode sinusoidal perturbation. The computations are carried out using the MIMOZA code based on implicit large eddy simulation (ILES) with the Euler equations integrated on a mesh with square cells. The numerical results are compared with each other and, at M = 1.3, with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Yu. V. Yanilkin, V. P. Statsenko, and V. I. Kozlov, Mathematical Modeling of Turbulent Mixing in Compressible Media: Lecture Course (Vseross. Nauchno-Issled. Inst. Eksp. Fiz., Sarov, 2019), Vol. 1 [in Russian].

    Google Scholar 

  2. M. Groom and B. Thornber, “The influence of initial perturbation power spectra on the growth of a turbulent mixing layer by Richtmyer–Meshkov instability,” Physica D 407, 132463 (2020).

  3. F. F. Grinstein, “Initial conditions and modeling for simulations of shock driven turbulent material mixing,” Comput. Fluid 151, 58–72 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Haines, F. Grinstein, and J. Schwarzkopf, “Reynolds-averaged Navier–Stokes initialization and benchmarking in shock-driven turbulent mixing,” J. Turbul. 14 (2), 46–70 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Grégoire, D. Souffland, and S. Gauthier, “A second-order turbulence model for gaseous mixtures induced by Richtmyer–Meshkov instability,” J. Turbul. 6, 92 (2005).

    Article  MathSciNet  Google Scholar 

  6. A. N. Razin, Simulation of Turbulent Mixing in Gas Layers (Vseross. Nauchno-Issled. Inst. Eksp. Fiz., Sarov, 2020) [in Russian].

    Google Scholar 

  7. S. Gauthier and M. Bonnet, “A K–ε model for turbulent mixing in shock-tube flows induced by Rayleigh–Taylor instability,” Phys. Fluid 2 (9), 1685–1684 (1990).

    Article  MATH  Google Scholar 

  8. K. Sinha, K. Mahesh, and G. Candler, “Modeling shock unsteadiness in shock/turbulence interaction,” Phys. Fluid 15 (8), 2290–2297 (2003).

    Article  MATH  Google Scholar 

  9. Implicit Large Eddy Simulation: Computing Turbulent Flow Dynamics, Ed. by F. F. Grinstein, L. G. Margolin, and W. J. Rider (Cambridge Univ. Press, New York, 2007).

    MATH  Google Scholar 

  10. E. V. Bodrov, V. V. Zmushko, N. V. Nevmerzhitskii, A. N. Razin, E. D. Sen’kovskii, and E. A. Sotskov, “Computational and experimental investigation of the development of turbulent mixing in a gas layering in passage of a shock wave,” Fluid Dyn. 53, 385–393 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. E. Bol’shakova, V. V. Zmushko, N. V. Nevmerzhitskii, A. N. Razin, E. D. Sen’kovskii, and E. A. Sotskov, “Numerical simulation of instability development at the contact boundaries in a three-layer gas system: Comparison with experimental data,” J. Appl. Mech. Tech. Phys. 62 (1), 38–48 (2021).

    Article  MathSciNet  Google Scholar 

  12. D. Drikakis, C. Fureby, F. Grinstein, and D. Youngs, “Simulation of transition and turbulence decay in the Taylor–Green vortex,” J. Turbul. 8, 20 (2007).

    Article  MATH  Google Scholar 

  13. S. Ukai, K. Balakrishnan, and S. Menon, “Growth rate predictions of single- and multi-mode Richtmyer–Meshkov instability with reshock,” Shock Wave 21, 533–546 (2011).

    Article  Google Scholar 

  14. B. Olson and J. Greenough, “Large eddy simulation requirements for Richtmyer–Meshkov instability,” Phys. Fluid 26, 044103 (2014).

  15. R. Cohen, W. Dannevik, A. Dimits, D. Eliason, A. A. Mirin, Ye Zhou, D. H. Porter, and P. R. Woodward, “Three-dimensional simulation of a Richtmyer–Meshkov instability with a two-scale initial perturbation,” Phys. Fluid 14, 3692–3709 (2002).

    Article  MATH  Google Scholar 

  16. B. Thornber, D. Drikakis, R. Williams, and D. Youngs, “The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability,” J. Fluid Mech. 654, 99–139 (2010).

    Article  MATH  Google Scholar 

  17. F. Grinstein, A. Gowardhan, and A. Wachtor, “Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments,” Phys. Fluid 23, 034106 (2011).

  18. A. Gowardhan and F. Grinstein, “Numerical simulation of Richtmyer–Meshkov instabilities in shocked gas curtains,” J. Turbul. 12, 43 (2011).

    Article  Google Scholar 

  19. N. V. Zmitrenko, M. E. Ladonkina, and V. F. Tishkin, “Numerical study of turbulent mixing for one problem of Richtmyer–Meshkov instability development,” VANT Ser. Mat. Model. Fiz. Protsessov, No. 1, 12–26 (2004).

  20. O. G. Sin’kova, V. P. Statsenko, and Yu. V. Yanilkin, “Numerical simulation of an experiment concerning turbulent mixing after multiple shock wave transmission through an interface,” VANT Ser. Teor. Prikl. Fiz., No. 3, 17–22 (2004).

  21. M. Hahn, D. Drikakis, D. Youngs, and R. Williams, “Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow,” Phys. Fluid 23, 046101 (2011).

  22. N. V. Nevmerzhitskii, Hydrodynamic Instability and Turbulent Mixing of Substances: Laboratory Modeling (Vseross. Nauchno-Issled. Inst. Eksp. Fiz., Sarov, 2018) [in Russian].

    Google Scholar 

  23. V. V. Zmushko, F. A. Pletenev, V. A. Saraev, and I. D. Sofronov, “Methods for solving three-dimensional gas dynamic equations in mixed Lagrangian–Eulerian coordinates,” VANT Ser. Metodiki Program. Chislen. Resheniya Zadach Mat. Fiz., No. 1, 22–27 (1988).

  24. I. D. Sofronov, E. A. Afanas’eva, O. A. Vinokurov, A. I. Voropinov, V. V. Zmushko, F. A. Pletenev, P. V. Rybachenko, V. A. Saraev, N. V. Sokolova, and B. N. Shamraev, “MIMOZA code for solving multidimensional problems of continuum mechanics on the Elbrus-2 computer,” VANT Ser. Mat. Model. Fiz. Protsessov, No. 2, 3–9 (1990).

  25. V. V. Zmushko, “Computation of convective flows and their realization in MIMOZA code,” Proceedings International Workshop “New Models of Numerical Codes for Shock Wave Processes in Condensed Media,” Oxford, September 15–19, 1997, pp. 423–429.

  26. V. K. Ladagin and A. M. Pastushenko, “A scheme for calculation of gas dynamic flows,” Chislen. Metody Mekh. Sploshnoi Sredy 8 (2), 66–72 (1977).

    Google Scholar 

  27. D. J. Benson, “Volume of fluid interface reconstruction methods for multi-material problems,” Appl. Mech. Rev. 55 (2), 151–165 (2002).

    Article  Google Scholar 

  28. V. Dyadechko and M. Shashkov, “Multi-material interface reconstruction from the moment data,” Tech. Rep. LA-UR-07-0656, LANL (2006).

  29. J. E. Pilliod and E. G. Pucket, “Second order accurate volume-of-fluid algorithms for tracking material interfaces,” J. Comput. Phys. 199, 465–502 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Commun. Pure Appl. Math. 13, 297–319 (1960).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Center of Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Zmushko, A. N. Razin, A. A. Sinel’nikova or A. N. Shcherbakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zmushko, V.V., Razin, A.N., Sinel’nikova, A.A. et al. Influence of the Shock Wave Intensity on Instability Development at Rough Interfaces of a Three-Layer Gas System. Comput. Math. and Math. Phys. 63, 413–424 (2023). https://doi.org/10.1134/S0965542523030132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523030132

Keywords:

Navigation