Skip to main content
Log in

On the Approximation of a Nearly Dynamically Symmetric Rigid Body by Two Balls

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A nearly dynamically symmetric rigid body is considered. An approximation of this body by a system of two homogeneous balls is studied, such that the components of the Euler–Poinsot tensor of the original body and its approximation coincide up to the third order and the moments of inertia of the body are well approximated by the moments of inertia of the system of two balls. Asteroids 1620 Geographos and 25143 Itokawa are considered as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. D. Kislik, “Motion of an artificial satellite in the Earth’s normal gravity field,” Iskusstv. Sputniki Zemli, No. 4, 3–17 (1960).

  2. M. D. Kislik, “Analysis of integrals of the equations of motion of an artificial satellite in the Earth’s normal gravity field,” Iskusstv. Sputniki Zemli, No. 13, 23–52 (1963).

  3. E. P. Aksenov, E. A. Grebenikov, and V. G. Demin, “The generalized problem of motion about two fixed centers and its application to the theory of artificial Earth satellites,” Sov. Astron. 7 (2), 276–282 (1963).

    MathSciNet  MATH  Google Scholar 

  4. V. G. Demin, Motion of an Artificial Satellite in a Noncentral Gravity Field (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  5. J. P. Vinti, “Theory of an accurate intermediary orbit for satellite astronomy,” J. Res. Nat. Bur. Stand. B 65 (3), 169–201 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics (Academic, New York, 1961).

    MATH  Google Scholar 

  7. G. N. Duboshin, Celestial Mechanics: Analytical and Qualitative Methods (Nauka, Moscow, 1964) [in Russian].

    MATH  Google Scholar 

  8. V. V. Beletsky, Essays on the Motion of Celestial Bodies (Nauka, Moscow, 1972; Birkhäuser, Basel, 2001).

  9. V. G. Demin, I. I. Kosenko, P. S. Krasil’nikov, and S. D. Furta, Selected Problems in Celestial Mechanics (RCD, Izhevsk, 1999) [in Russian].

  10. L. Euler, “Problème. Un corps étant attiré en raison réciproque quarrée des distances vers deux points fixes donnés trouver les cas où la courbe décrite par ce corps sera algébrique,” Mém. Acad. Sci. Berlin 16, 228–249 (1767).

    Google Scholar 

  11. V. M. Alekseev, “Generalized spatial problem of two fixed centers: Classification of motions,” Byul. Inst. Teor. Astron. 10 (4), 241–271 (1965).

    Google Scholar 

  12. V. V. Beletsky, “Generalized restricted circular three-body problem as a model for dynamics of binary asteroids,” Cosmic Res. 45 (5), 408–416 (2007).

    Article  Google Scholar 

  13. V. V. Beletsky and A. V. Rodnikov, “Stability of triangle libration points in generalized restricted circular three-body problem,” Cosmic Res. 46 (1), 40–48 (2008).

    Article  Google Scholar 

  14. A. V. Rodnikov, “Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers,” Nelin. Din. 10 (2), 213–222 (2014).

    Article  MATH  Google Scholar 

  15. A. A. Burov, A. D. Guerman, E. A. Raspopova, and V. I. Nikonov, “On the use of the K-means algorithm for determination of mass distributions in dumbbell-like celestial bodies,” Russ. J. Nonlinear Dyn. 14 (1), 45–52 (2018).

    MATH  Google Scholar 

  16. A. A. Burov, A. D. Guerman, and V. I. Nikonov, “Using the K-means method for aggregating the masses of elongated celestial bodies,” Cosmic Res. 57 (4), 266–271 (2019).

    Article  Google Scholar 

  17. A. A. Burov, A. D. Guerman, E. A. Nikonova, and V. I. Nikonov, “Approximation for attraction field of irregular celestial bodies using four massive points,” Acta Astron. 157, 225–232 (2019).

    Article  Google Scholar 

  18. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Partial Differential Equations of Mathematical Physics (Vysshaya Shkola, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  19. G. N. Duboshin, Celestial Mechanics: Basic Problems and Methods (Fizmatlit, Moscow, 1968; Defense Tech. Inf. Center, Fort Belvoir, 1969).

  20. T. Soler, “A new matrix development of the potential and attraction at exterior points as a function of the inertia tensors,” Celestial Mech. 32 (3), 257–296 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. R. Dobrovolskis, “Inertia of any polyhedron,” Icarus 124 (2), 698–704 (1996).

    Article  Google Scholar 

  22. B. Mirtich, “Fast and accurate computation of polyhedral mass properties,” J. Graphics Tools 1 (2), 31–50 (1996).

    Article  Google Scholar 

  23. A. A. Burov and V. I. Nikonov, “Computation of attraction potential of asteroid (433) Eros with an accuracy up to the terms of the fourth order,” Dokl. Phys. 65 (5), 164–168 (2020).

    Article  Google Scholar 

  24. A. A. Burov and V. I. Nikonov, “Inertial characteristics of higher orders and dynamics in a proximity of a small celestial body,” Russ. J. Nonlinear Dyn. 16 (2), 259–273 (2020).

    MathSciNet  MATH  Google Scholar 

  25. A. A. Burov and V. I. Nikonov, “Sensitivity of the Euler–Poinsot tensor values to the choice of the body surface triangulation mesh,” Comput. Math. Math. Phys. 60 (10), 1708–1720 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. A. Burov and E. A. Nikonova, “The generating function for the components of the Euler–Poinsot tensor,” Dokl. Phys. 66 (5), 139–142 (2021).

    Article  Google Scholar 

  27. R. A. Werner, “The gravitational potential of a homogeneous polyhedron or don’t cut corners,” Celestial Mech. Dyn. Astron. 59, 253–278 (1994).

    Article  MATH  Google Scholar 

  28. Cambridge Learner’s Dictionary English–Russian (Cambridge Univ. Press, Cambridge, 2011).

  29. S. J. Ostro, R. F. Jurgens, K. D. Rosema, et al., “Radar observations of asteroid 1620 Geographos,” Icarus 121 (1), 46–66 (1996).

    Article  Google Scholar 

  30. R. S. Hudson and S. J. Ostro, “Physical model of asteroid 1620 Geographos from radar and optical data,” Icarus 140 (2), 369–378 (1999).

    Article  Google Scholar 

  31. S. Abe, T. Mukai, N. Hirata, et al., “Mass and local topography measurements of Itokawa by Hayabusa,” Science 312 (5778), 1344–1347 (2006).

    Article  Google Scholar 

  32. R. Gaskell, J. Saito, M. Ishiguro, et al., “Gaskell Itokawa shape model V1.0,” NASA Planetary Data System (2008).

    Google Scholar 

  33. J. Lages, D. L. Shepelyansky, and I. I. Shevchenko, “Chaotic zones around rotating small bodies,” Astron. J. 153 (6), 272 (2017).

    Article  Google Scholar 

  34. V. I. Nikonov, Gravitational Fields of Small Celestial Bodies (Belyi Veter, Moscow, 2020) [in Russian].

    Google Scholar 

  35. A. A. Burov, A. D. Guerman, I. I. Kosenko, and V. I. Nikonov, “On the gravity of dumbbell-like bodies represented by a pair of intersecting balls,” Nelin. Din. 13 (2), 243–256 (2017).

    Article  MATH  Google Scholar 

  36. X. Wang, Y. Jiang, and Sh. Gong, “Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies,” Astrophys. Space Sci. 353 (1), 105–121 (2014).

    Article  Google Scholar 

  37. X. Zeng, F. Jiang, J. Li, and H. Baoyin, “Study on the connection between the rotating mass dipole and natural elongated bodies,” Astrophys. Space Sci. 356, 29–42 (2015).

    Article  Google Scholar 

  38. J. Lages, I. I. Shevchenko, and G. Rollin, “Chaotic dynamics around cometary nuclei,” Icarus 307, 391–399 (2018).

    Article  Google Scholar 

  39. S. A. Stern et al., “Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object,” Science 364 (6441), eaaw9771 (2019).

  40. G. Rollin, I. I. Shevchenko, and J. Lages, “Dynamical environments of MU69 and similar objects,” Icarus 357, 114178 (2021).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-21-00297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Burov or V. I. Nikonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burov, A.A., Nikonov, V.I. On the Approximation of a Nearly Dynamically Symmetric Rigid Body by Two Balls. Comput. Math. and Math. Phys. 62, 2154–2160 (2022). https://doi.org/10.1134/S0965542522120053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522120053

Keywords:

Navigation