Skip to main content
Log in

Numerical Simulation of Turbulent Flows Based on Modern Turbulence Models

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The new two-fluid turbulence model is compared with other RANS models for various turbulent flows: mixing of two flows, flow in a flat diffuser and an axisymmetric incompressible subsonic jet. In this paper, the most popular models capable of adequately describing complex turbulent flows are considered as RANS models. Comparisons of models are carried out not only by the accuracy of the results obtained, but also by the consumption of computing resources for the implementation of these models. Therefore, the computational algorithm for all models was the same and the method of establishing, i.e., by integrating non-stationary equations, was used to achieve stationary solutions. For the numerical implementation of systems of hydrodynamic equations, a finite-difference scheme was used, where the viscous terms were approximated by the central difference implicitly, and for convective terms, an explicit scheme against the flow of the second order of accuracy was used. At each time step, the correction for the velocities was carried out through the pressure according to the S-IMPLE procedure. To assess the adequacy, the obtained numerical results are compared with the known experimental data. Comparisons of numerical results have shown that the two-fluid model is easy to implement, requires less computational resources than other RANS models and is able to predict turbulent flows with great accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. H. Bahmani et al., “Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger,” Adv. Powder Technol. 29, 273–282 (2018). https://doi.org/10.1016/j.apt.2017.11.013

    Article  Google Scholar 

  2. M. Goodarzi et al., “Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium,” Hindawi Publ. Corporation Sci. World J. 2014, Article ID 761745 (2014). https://doi.org/10.1155/2014/761745

  3. R. S. Mohammad et al., “Heat transfer and pressure drop in fully developed turbulent flows of graphene nanoplatelets–silver/water nanofluids,” Fluids 1, 20 (2016). https://doi.org/10.3390/fluids1030020

    Article  Google Scholar 

  4. A. R. Gheynani, O. A. Akbari, M. Zarringhalam, G. A. Sh. Shabani, A. A. Alnaqi, M. Goodarzi, and D. Toghraie, “Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube,” Int. J. Numer. Methods Heat & Fluid Flow 29 (5), 1699–1723 (2019). https://doi.org/10.1108/HFF-07-2018-0368

    Article  Google Scholar 

  5. Tian Zhe et al., “Turbulent flows in a spiral double-pipe heat exchanger optimal performance conditions using an enhanced genetic algorithm,” Int. J. Numer. Methods Heat & Fluid Flow 30 (1), 39–53 (2020). https://doi.org/10.1108/HFF-04-2019-0287

    Article  Google Scholar 

  6. H. Togun et al., “Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step,” Appl. Math. Comput. 239, 153–170 (2014). https://doi.org/10.1016/j.amc.2014.04.051

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Safaei, H. Togun, K. Vafai, S. N. Kazi, and A. Badarudin, “Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids,” Numer. Heat Transfer, Part A: Appl. 66 (12), 1321–1340 (2014). https://doi.org/10.1080/10407782.2014.916101

    Article  Google Scholar 

  8. J. Boussinesq, Essai sur la théorie des eaux courantes (Mémoires présentées par diverses savants à l’Acad. D. Sci., Paris, 1877), Vol. 23.

  9. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30 (4), 299–303 (1941).

    MathSciNet  Google Scholar 

  10. L. Prandtl, “Bericht über Untersuchungen zur ausgebildete Turbulenz,” Z. Angew. Math. Mech. 5, 136–139 (1925).

    Article  Google Scholar 

  11. Th. von Kármán, “Mechanische Ahnlichkeit und Turbulenz,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1930), pp. 58–76.

    MATH  Google Scholar 

  12. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper 1992-0439 (1992).

  13. F. R. Menter, “Zonal two-equation k-ω turbulence models for aerodynamic flows,” AIAA Paper 1993-2906 (1993).

  14. F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the SST turbulence model,” Turbulence, Heat and Mass Transfer 4, Ed. by K. Hanjalic, Y. Nagano, and M. Tummers (Begell House, New York, 2003), pp. 625–632.

    Google Scholar 

  15. D. B. Spalding, “Chemical reaction in turbulent fluids,” J. Phys.-Chem. Hydrodyn. 4, 323–336 (1983).

    Google Scholar 

  16. D. B. Spalding, “A turbulence model for buoyant and combusting flows,” in Proceedings of the 4th International Conference on Numerical Methods in Thermal Problems, Swansea, July 15–18, 1984, Imperial College Report CFD/86/4 (1984).

  17. Z. M. Malikov, “Mathematical model of turbulence based on the dynamics of two fluids,” Appl. Math. Model. 82, 409–436 (2020).

    Article  MathSciNet  Google Scholar 

  18. Z. M. Malikov and M. E. Madaliev, “Numerical simulation of two-phase flow in a centrifugal separator,” Fluid Dyn. 55 (8), 1012–1028 (2020).

    Article  MathSciNet  Google Scholar 

  19. Z. M. Malikov, “Mathematical model of turbulent heat transfer based on the dynamics of two fluids,” Appl. Math. Model. 91, 186–213 (2021). https://orcid.org/0000-0001-9038-5407

    Article  MathSciNet  Google Scholar 

  20. P. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid. Mech. 22, 385–400 (1965).

    Article  Google Scholar 

  21. H. H. Fernholz and H. E. Fiedler, Proceedings of the 2nd European Turbulence Conference, Berlin, August 30–September 2, 1988 (Springer-Verlag, Berlin, 1989), pp. 251–256.

  22. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington, 1980).

    MATH  Google Scholar 

  23. M. E. Madaliev, “Numerical calculation of an air centrifugal separator based on the SARC turbulence model,” J. Appl. Comput. Mech. 6, 1133–1140 (2020). https://doi.org/10.22055/JACM.2020.31423.1871

    Article  Google Scholar 

  24. T. Cebeci, G. J. Mosinskis, and A. M. O. Smith, “Calculation of separation points in incompressible turbulent flows,” J. Aircraft 9 (9), 618–624 (1972).

    Article  Google Scholar 

  25. S. Obi, K. Aoki, and S. Masuda, “Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser,” in The 9th Symposium on Turbulent Shear Flows, Kyoto, Japan (1993), p. 305-1.

  26. Y. Klistafani, “Experimental and numerical study of turbulent flow characteristics in asymmetric diffuser,” I-nter. Conf. ADRI-5 (Sci. Publ. towards Global Competitive Higher Education, 2017), pp. 285–291.

  27. O. Törnblom, PhD Dissertation (KTH, 2006).

  28. A. B. Reid, “Turbulent flow through an asymmetric plane diffuser,” Purdue Univ., April (2011).

  29. T. H. Muhammad, M. J. Mahmud, S. U. Umar, and S. Aisha, “Numerical study of flow in asymmetric 2D plane diffusers with different inlet channel lengths,” CFD Lett. 11 (5), 1–21 (2019).

    Google Scholar 

  30. C. U. Buice and J. K. Eaton, “Experimental investigation of flow through an asymmetric plane diffuser,” J. Fluids Eng. 122 (2), 433–435 (2000).

    Article  Google Scholar 

  31. S. Wallin and A. V. Johansson, “An explicit algebraic model of Reynolds stresses for incompressible and compressible turbulent flows,” Fluid Mech. 403, 89–132 (2000).

    Article  MathSciNet  Google Scholar 

  32. M. E. Madaliev, “Numerical study of axisymmetric jet flows based on the turbulent model vt-92,” Vestn. SUSU Ser.: Comput. Math. Comput. Sci. 9 (4), 67–78 (2020). https://doi.org/10.14529/cmse200405

    Article  Google Scholar 

  33. R. Cristopher, Turbulence Modeling Resource (NASA Langley Research Center). http://turbmodels.larc.nasa.gov. Accessed April 4, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. M. Malikov or M. E. Madaliev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malikov, Z.M., Madaliev, M.E. Numerical Simulation of Turbulent Flows Based on Modern Turbulence Models. Comput. Math. and Math. Phys. 62, 1707–1722 (2022). https://doi.org/10.1134/S0965542522100098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522100098

Keywords:

Navigation