Skip to main content
Log in

Theoretical Analysis and Numerical Implementation of a Stationary Diffusion–Drift Model of Polar Dielectric Charging

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The global solvability and local uniqueness of the solution of a boundary value problem for the model of electron-induced charging of polar dielectrics are proved. The model is described by a semilinear diffusion–drift equation and Maxwell’s equations, which relate the charge density and the electric field. For the charge density function, the maximum and minimum principle is established, which is used to control the data of the computational experiment. The results of a finite element implementation of a mathematical model of polar dielectric charging under conditions of electron irradiation are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Kotera, K. Yamaguchi, and H. Suga, “Dynamic simulation of electron-beam-induced charging up of insulators,” Jpn. J. Appl. Phys. 38 (12), 7176–7179 (1999).

    Article  Google Scholar 

  2. K. Ohya, K. Inai, H. Kuwada, T. Hauashi, and M. Saito, “Dynamic simulation of secondary electron emission and charging up of an insulting material,” Surf. Coat. Technol. 202, 5310–5313 (2008).

    Article  Google Scholar 

  3. A. G. Maslovskaya, “Physical and mathematical modeling of the electron-beam-induced charging of ferroelectrics during the process of domain structure switching,” J. Surf. Invest. 7 (4), 680–684 (2013).

    Article  Google Scholar 

  4. A. V. Pavelchuk and A. G. Maslovskaya, “Approach to numerical implementation of the drift-diffusion model of field effects induced by a moving source,” Russ Phys J. 63, 105–112 (2020).

    Article  Google Scholar 

  5. B. Raftari, N. V. Budko, and C. Vuik, “Self-consistent drift–diffusion–reaction model for the electron beam interaction with dielectric samples,” J. Appl. Phys. 118 (17), 204101 (2015).

  6. D. S. Chezganov, D. K. Kuznetsov, and V. Ya. Shur, “Simulation of spatial distribution of electric field after electron beam irradiation of MgO-doped LiNbO3 covered by resist layer,” Ferroelectrics 496, 70–78 (2016).

    Article  Google Scholar 

  7. A. Maslovskaya and A. Pavelchuk, “Simulation of dynamic charging processes in ferroelectrics irradiated with SEM,” Ferroelectrics 476, 157–167 (2015).

    Article  Google Scholar 

  8. A. Maslovskaya and A. V. Sivunov, “Simulation of electron injection and charging processes in ferroelectrics modified with SEM-techniques,” Solid State Phenom. 213, 119–124 (2014).

    Article  Google Scholar 

  9. P. T. Oreshkin, Physics of Semiconductors and Dielectrics (Vysshaya Shkola, Moscow, 1977) [in Russian].

    Google Scholar 

  10. J. Cazaux, “About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution,” Microsc. Microanal. 10 (6), 670–680 (2004).

    Article  Google Scholar 

  11. S. S. Borisov, E. A. Grachev, and S. I. Zaitsev, “Modeling of dielectric polarization during an electron beam exposure,” Prikl. Fiz., No. 1, 118–124 (2004).

  12. G. M. Sessler and G. M. Yang, “Charge dynamics in electron-irradiated polymers,” Braz. J. Phys. 29 (2), 233–240 (1999).

    Article  Google Scholar 

  13. D. S. H. Chan, K. S. Sim, and J. C. H. Phang, “A simulation model for electron irradiation induced specimen charging in a scanning electron microscope,” Scanning Spectrosc. 7 (31), 847–859 (1993).

    Google Scholar 

  14. H. Suga, H. Tadokoro, and M. Kotera, “A simulation of electron beam induced charging-up of insulators,” Electron Microsc. 1, 177–178 (1998).

    Google Scholar 

  15. S. V. Polyakov, Doctoral Dissertation in Mathematics and Physics (Moscow, 2011).

  16. K. T. Arat, T. Klimpel, and C. W. Hagen, “Model improvements to simulate charging in scanning electron microscope,” J. Micro/Nanolithography, MEMS, MOEMS 18 (4), 04403 (2019).

    Article  Google Scholar 

  17. K. Ito and K. Kunish, “Estimation of the convection coefficient in elliptic equations,” Inverse Probl. 14, 995–1013 (1997).

    Article  MathSciNet  Google Scholar 

  18. G. V. Alekseev, R. V. Brizitskii, and Zh. Yu. Saritskaya, “Stability estimates of solutions to extremal problems for nonlinear convection–diffusion–reaction equation,” J. Appl. Ind. Math. 10 (2), 155–167 (2016).

    Article  MathSciNet  Google Scholar 

  19. G. V. Alekseev, O. V. Soboleva, and D. A. Tereshko, “Identification problems for a steady-state model of mass transfer,” J. Appl. Mech. Tech. Phys. 49 (4), 537–547 (2008).

    Article  MathSciNet  Google Scholar 

  20. G. V. Alekseev, “Coefficient inverse extremum problems for stationary heat and mass transfer equations,” Comput. Math. Math. Phys. 47 (6), 1007–1028 (2007).

    Article  MathSciNet  Google Scholar 

  21. R. V. Brizitskii and Zh. Yu. Saritskaya, “Inverse coefficient problems for a nonlinear convection–diffusion–reaction equation,” Izv. Math. 82 (1), 14–39 (2018).

    Article  MathSciNet  Google Scholar 

  22. R. V. Brizitskii and Zh. Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection–diffusion–reaction equation,” J. Inverse Ill-Posed Probl. 26 (6), 821–833 (2018).

    Article  MathSciNet  Google Scholar 

  23. R. V. Brizitskii and Zh. Yu. Saritskaya, “Boundary control problem for a nonlinear convection–diffusion–reaction equation,” Comput. Math. Math. Phys. 58 (12), 2053–2063 (2018).

    Article  MathSciNet  Google Scholar 

  24. A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, and K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange,” J. Math. Anal. Appl. 460 (2), 737–744 (2018).

    Article  MathSciNet  Google Scholar 

  25. A. Yu. Chebotarev, A. E. Kovtanyuk, G. V. Grenkin, N. D. Botkin, and K.-H. Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative–conductive heat transfer model,” Appl. Math. Comput. 289, 371–380 (2016).

    MathSciNet  MATH  Google Scholar 

  26. A. Yu. Chebotarev, G. V. Grenkin, and A. E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer,” ESAIM Math. Model. Numer. Anal. 51 (6), 2511–2519 (2017).

    Article  MathSciNet  Google Scholar 

  27. A. G. Maslovskaya, L. I. Moroz, A. Y. Chebotarev, and A. E. Kovtanyuk, “Theoretical and numerical analysis of the Landau–Khalatnikov model of ferroelectric hysteresis,” Commun. Nonlinear Sci. Numer. Simul. 93, 105524 (2021).

  28. G. V. Alekseev, Optimization in Stationary Problems of Heat and Mass Transfer and Magnetohydrodynamics (Nauchnyi Mir, Moscow, 2010) [in Russian].

    Google Scholar 

  29. A. Buffa, “Some numerical and theoretical problems in computational electromagnetism,” Thesis (2000).

  30. O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations (Nauka, Moscow, 1964; Academic, New York, 1987).

  31. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer-Verlag, Berlin, 1983).

    MATH  Google Scholar 

  32. H. Berninger, “Non-overlapping domain decomposition for the Richards equation via superposition operators,” Domain Decomposition Methods in Science and Engineering XVIII (Springer, 2009), pp. 169–176.

    MATH  Google Scholar 

  33. G. Alekseev and R. Brizitskii, “Solvability of the boundary value problem for stationary magnetohydrodynamic equations under mixed boundary conditions for the magnetic field,” Appl. Math. Lett. 32 (1), 13–18 (2014).

    Article  MathSciNet  Google Scholar 

  34. G. V. Alekseev and V. G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics,” J. Appl. Ind. Math. 6 (1), 1–5 (2011).

    Article  Google Scholar 

  35. G. V. Alekseev, V. A. Levin, and D. A. Tereshko, “The optimization method in design problems of spherical layered thermal shells,” Dokl. Phys. 62 (10), 465–469 (2017).

    Article  Google Scholar 

Download references

Funding

This work was carried out as part of research and development project no. АААА-А20-120120390006-0 of the Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, and was supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-02-2021-1395 and project no. 122082400001-8); project no. 1022052600018-5-1.2.1;1.1.2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Brizitskii, N. N. Maksimova or A. G. Maslovskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brizitskii, R.V., Maksimova, N.N. & Maslovskaya, A.G. Theoretical Analysis and Numerical Implementation of a Stationary Diffusion–Drift Model of Polar Dielectric Charging. Comput. Math. and Math. Phys. 62, 1680–1690 (2022). https://doi.org/10.1134/S0965542522100037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522100037

Keywords:

Navigation