Skip to main content
Log in

Rapidly Convergent Series for Solving the Electrovortex Flow Problem in a Hemispherical Vessel

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A linear boundary value problem describing the axially symmetric steady viscous electrovortex flow in a hemispherical container is considered. The electrovortex flow is generated due to the interaction of an electric current flowing through the medium with the magnetic field produced by this current. In earlier works, formal double series in terms of the eigenfunctions of the Dirichlet problem for the Laplacian in a hemispherical layer were obtained for the solution of this problem. The Fourier coefficients were expressed in terms of hypergeometric functions, and they contained the eigenvalues of the hemispherical layer. In this paper, the classical solution of the boundary value problem under study is represented in the form of single series in terms of associated Legendre functions. The expansion coefficients are elementary functions of the radial variable. The first few terms are sufficient for the correct representation of the solution. The rate of decay of the terms is estimated. The smoothness of the solution is proved using Weyl’s lemma. The results can be useful in the study of other boundary value problems involving a vector Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. Bojarevics, J. A. Freibergs, E. I. Shilova, and E. V. Shcherbinin, Electrically Induced Vortical Flows (Kluwer Academic, 1989, Dordrecht).

  2. Ya. Yu. Kompan and E. V. Shcherbinin, Electroslag Welding and Melting with Controlled MHD Processes (Mashinostroenie, Moscow, 1989) [in Russian].

    Google Scholar 

  3. I. M. Yachikov, O. I. Karandaeva, and T. P. Larina, Simulation of Electrovortex Flows in a DC Arc Furnace (Magnitogorsk, 2008).

    Google Scholar 

  4. V. G. Zhilin, Yu. P. Ivochkin, V. S. Igumnov, and A. A. Oksman, “Experimental investigation of electrovortex flows in a hemispherical volume,” High Temp. 33 (1), 1–4 (1995).

    Google Scholar 

  5. W. Herreman, S. Bénard, C. Nore, P. Personnettaz, L. Cappanera, and J.-L. Guermond, “Solutal buoyancy and electrovortex flow in liquid metal batteries,” Phys. Rev. Fluids 5, 074501 (2020).

  6. E. A. Mikhailov and I. O. Teplyakov, “Analytical solution of the problem of the electrovortex flow in the hemisphere with finite size electrodes in the Stokes approximation,” Moscow Univ. Phys. Bull. 73, 162–167 (2018).

    Article  Google Scholar 

  7. D. A. Vinogradov, Yu. P. Ivochkin, and I. O. Teplyakov, “Effect of the Earth’s magnetic field on the electric-vortex-flow structure,” Dokl. Phys. 63 (11), 447–450 (2018).

    Article  Google Scholar 

  8. C. Sozou and W. M. Pickering, “Magnetohydrodynamic flow due to the discharge of an electric current in a hemispherical container,” J. Fluid Mech. 73 Part 4, 641–650 (1976).

    Article  Google Scholar 

  9. C. Sozou and W. M. Pickering, “Magnetohydrodynamic flow in a container due to the discharge of an electric current from a finite size electrode,” Proc. R. Soc. London, Ser. A 362, 509–523 (1978).

    Article  Google Scholar 

  10. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1969).

    MATH  Google Scholar 

  11. F. L. Chernous’ko, “Motion of a rigid body with cavities filled with viscous fluid at small Reynolds numbers,” USSR Comput. Math. Math. Phys. 5 (6), 99–127 (1965).

    Article  Google Scholar 

  12. F. L. Chernous’ko, “Motion of a body with a cavity filled with a viscous fluid at large Reynolds numbers,” J. Appl. Math. Mech. 30 (3), 568–589 (1966).

    Article  Google Scholar 

  13. R. S. Saks, “Cauchy problem for the Navier–Stokes equations and the Fourier method,” Ufim. Mat. Zh. 3 (1), 53–79 (2011).

    MathSciNet  MATH  Google Scholar 

  14. R. S. Saks, “Global solutions of the Navier–Stokes equations in a uniformly rotating space,” Theor. Math. Phys. 162 (2), 163–178 (2010).

    Article  MathSciNet  Google Scholar 

  15. V. V. Pukhnachev, “Dirichlet problem for the Stokes equation,” Math. Notes 101 (1), 132–136 (2017).

    Article  MathSciNet  Google Scholar 

  16. A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kravtsov, Lectures on Mathematical Physics (Nauka, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  17. O. A. Oleinik, Lectures on Partial Differential Equations (Binom, Moscow, 2007) [in Russian].

    Google Scholar 

  18. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications (Nauka, Moscow, 1984; Birkhäuser, Basel, 1987).

  19. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdélyi (McGraw-Hill, New York, 1953), Vol. 1.

    Google Scholar 

  20. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1995).

    MATH  Google Scholar 

  21. R. Courant and D. Hilbert, Methoden der mathematischen Physik (Springer, Berlin, 1924).

    Book  Google Scholar 

  22. V. A. Il’in, “On convergence of expansions in eigenfunctions of the Laplace operator,” Usp. Mat. Nauk 13 (1), 87–180 (1958).

    MathSciNet  Google Scholar 

  23. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow, 1962; Wiley, New York, 1964).

  24. A. G. Sveshnikov, “Incomplete Galerkin method,” Dokl. Akad. Nauk SSSR 236 (5), 1076–1079 (1977).

    MathSciNet  Google Scholar 

  25. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1999; Dover, New York, 2011).

  26. A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov, Differential Equations (Springer-Verlag, Berlin, 1985).

    Book  Google Scholar 

  27. V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).

    MATH  Google Scholar 

  28. M. C. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2: Fourier Analysis and Self-Adjointness (Academic, New York, 1975).

  29. K. V. Kholshevnikov and V. Sh. Shaidulin, “Asymptotics of the uniform norm of associated Legendre functions \(P_{n}^{k}\) when k << n,” Vestn. St. Petersburg Univ. Math. 42 (2), 141–148 (2009).

    Article  Google Scholar 

  30. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.N. Bogolyubov, A.A. Bykov, and A.V. Bad’in for valuable discussions of this paper.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, state assignment no. 075-01056-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Malyshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshev, K.Y., Mikhailov, E.A. & Teplyakov, I.O. Rapidly Convergent Series for Solving the Electrovortex Flow Problem in a Hemispherical Vessel. Comput. Math. and Math. Phys. 62, 1158–1170 (2022). https://doi.org/10.1134/S0965542522070065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522070065

Keywords:

Navigation