A. M. Il’in, “Differencing scheme for a differential equation with a small parameter affecting the highest derivative,” Math. Notes 6 (2), 596–602 (1969).
Article
Google Scholar
N. S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer,” USSR Comput. Math. Math. Phys. 9 (4), 139–166 (1969).
MathSciNet
Article
Google Scholar
T. Linß, Layer-Adapted Meshes for Reaction–Convection–Diffusion Problems (Springer-Verlag, Berlin, 2010).
Book
Google Scholar
R. Vulanovic, “A priori meshes for singularly perturbed quasilinear two-point boundary value problems,” IMA J. Numer. Anal. 21, 349–366 (2001).
MathSciNet
Article
Google Scholar
G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations (Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992) [in Russian].
MATH
Google Scholar
J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (World Scientific, Singapore, 2012).
Book
Google Scholar
N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].
MATH
Google Scholar
A. I. Zadorin, “Method of interpolation for a boundary layer problem,” Sib. Zh. Vychisl. Mat. 10 (3), 267–275 (2007).
MATH
Google Scholar
A. I. Zadorin, “Lagrange interpolation and Newton–Cotes formulas for functions with a boundary layer component on piecewise uniform meshes,” Numer. Anal. Appl. 8 (3), 235–247 (2015).
MathSciNet
Article
Google Scholar
I. A. Blatov and N. A. Zadorin, “Interpolation on Bakhvalov meshes in the case of an exponential boundary layer,” Uch. Zap. Kazan. Univ. Fiz.-Mat. Nauki 161 (4), 497–508 (2019).
Google Scholar
T. Linß, “The necessity of Shishkin decompositions,” Appl. Math. Lett. 14, 891–896 (2001).
MathSciNet
Article
Google Scholar
H. G. Roos, “Layer-adapted meshes: Milestones in 50 years of history,” Appl. Math. (2019). arXiv:1909.08273v1.
A. I. Zadorin and N. A. Zadorin, “Quadrature formulas for functions with a boundary-layer component,” Comput. Math. Math. Phys. 51 (11), 1837–1846 (2011).
MathSciNet
Article
Google Scholar
A. I. Zadorin and N. A. Zadorin, “An analogue of the four-point Newton–Cotes formula for a function with a boundary-layer component,” Numer. Anal. Appl. 6 (4), 268–278 (2013).
Article
Google Scholar
A. I. Zadorin and N. A. Zadorin, “Non-polynomial interpolation of functions with large gradients and its application,” Comput. Math. Math. Phys. 61 (2), 167–176 (2021).
MathSciNet
Article
Google Scholar