A. A. Samarskii and A. N. Tikhonov, “On excitation of radio waveguides I,” Zh. Teor. Phys. 17 (11), 1283–1296 (1947).
Google Scholar
A. A. Samarskii and A. N. Tikhonov, “On excitation of radio waveguides II,” Zh. Teor. Phys. 17 (12), 1431–1440 (1947).
Google Scholar
A. A. Samarskii and A. N. Tikhonov, “On excitation of radio waveguides III,” Zh. Teor. Phys. 18 (7), 971–983 (1948).
Google Scholar
A. A. Samarskii and A. N. Tikhonov, “On representation of the waveguide field as a sum of TE and TM fields,” Zh. Teor. Phys. 18 (7), 959–970 (1948).
Google Scholar
A. A. Samarskii and A. N. Tikhonov, “On the theory of excitation of radio waveguides,” in Selected Works by A.A. Samarskii (Maks, Moscow, 2003), pp. 28–57 [in Russian]).
Google Scholar
P. E. Krasnushkin and E. I. Moiseev, “On excitation of forced oscillations in a layered radio waveguide,” Dokl. Akad. Nauk SSSR 264 (5), 1123–1127 (1982).
MathSciNet
Google Scholar
I. E. Mogilevskii and A. G. Sveshnikov, Mathematical Problems in Diffraction Theory (Mosk. Gos. Univ., Moscow, 2010) [in Russian].
Google Scholar
A. G. Sveshnikov, “The basis for a method of calculating irregular waveguides,” USSR Comput. Math. Math. Phys. 3 (1), 219–232 (1963).
Article
Google Scholar
A. G. Sveshnikov, “A substantiation of a method for computing the propagation of electromagnetic oscillations in irregular waveguides,” USSR Comput. Math. Math. Phys. 3 (2), 413–429 (1963).
Article
Google Scholar
Yu. G. Smirnov, “On the completeness of the set of eigen- and associated modes of a partially filled waveguide with an irregular boundary,” Dokl. Akad. Nauk SSSR 297 (4), 829–832 (1987).
Google Scholar
Yu. G. Smirnov, “Application of the operator pencil method to the eigenmode problem for a partially filled waveguide,” Dokl. Akad. Nauk SSSR 312 (3), 597–599 (1990).
Google Scholar
Yu. G. Smirnov, “The method of operator pencils in boundary value problems of conjugation for a system of elliptic equations,” Differ. Equations 27 (1), 112–118 (1991).
MathSciNet
MATH
Google Scholar
A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, “On the completeness of the set of eigen- and associated functions of a waveguide,” Comput. Math. Math. Phys. 38 (11), 1815–1823 (1998).
MathSciNet
MATH
Google Scholar
A. L. Delitsyn, “An approach to the completeness of normal waves in a waveguide with magnetodielectric filling,” Differ. Equations 36 (5), 695–700 (2000).
MathSciNet
Article
Google Scholar
A. N. Bogolyubov, A. L. Delitsyn, and M. D. Malykh, “On the root vectors of a cylindrical waveguide,” Comput. Math. Math. Phys. 41 (1), 121–124 (2001).
MathSciNet
MATH
Google Scholar
A. L. Delitsyn, “On the completeness of the system of eigenvectors of electromagnetic waveguides,” Comput. Math. Math. Phys. 51 (10), 1771–1776 (2011).
MathSciNet
Article
Google Scholar
K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics, 2nd ed. (Springer, Berlin, 2008).
Google Scholar
A. N. Bogolyubov and T. V. Edakina, “Application of variational-difference methods to dielectric waveguide calculations,” Moscow Univ. Phys. Bull. 46 (2), 7–13 (1991).
Google Scholar
A. N. Bogolyubov and T. V. Edakina, “Computation of dielectric waveguides with intricate cross-sections by the variate-difference method,” Moscow Univ. Phys. Bull. 93 (3), 64–66 (1993).
MATH
Google Scholar
P. Deuflhard, F. Schmidt, T. Friese, and L. Zschiedrich, “Adaptive multigrid methods for the vectorial Maxwell eigenvalue problem for optical waveguide design,” Mathematics—Key Technology for the Future, Ed. By W. Jӓger and H. J. Krebs (Springer, Berlin, 2011), pp. 279–292.
MATH
Google Scholar
F. Schmidt, S. Burger, J. Pomplun, and L. Zschiedrich, “Advanced FEM analysis of optical waveguides: Algorithms and applications,” Proceedings of SPIE (2008), Vol. 6896.
E. Lezar and D. B. Davidson, “Electromagnetic waveguide analysis,” Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Project (2011), pp. 629–643.
M. V. Keldysh, “On the completeness of eigenfunctions from some classes of non-self-adjoint operators,” Selected Works: Mathematics (Nauka, Moscow, 1985), pp. 305–320 [in Russian].
MATH
Google Scholar
N. A. Novoselova, S. B. Raevskii, and A. A. Titarenko, “Calculation of characteristics of symmetric modes propagating in a circular waveguide with radially-heterogeneous dielectric filling,” Trudy Nizhegor. Gos. Tekh. Univ. im. R.E. Alekseeva, No. 2 (81), 30–38 (2010).
A. L. Delitsyn and S. I. Kruglov, “Mixed finite elements used to analyze the real and complex modes of cylindrical waveguides,” Moscow Univ. Phys. Bull. 66 (6), 546–560 (2011).
Article
Google Scholar
A. L. Delitsyn and S. I. Kruglov, “Application of the mixed finite element method to the calculation of modes of cylindrical waveguides with a variable refractive index,” Zh. Radioelektron. 7 (4), 1–28 (2012).
Google Scholar
J. Jin, The Finite Element Method in Electromagnetics, 2 ed. (Wiley, New York, 2002).
MATH
Google Scholar
Z. E. Eremenko, Yu. V. Tarasov, and I. N. Volovichev, “A method of effective potentials for calculating the frequency spectrum of eccentrically layered spherical cavity resonators,” J. Electromagnet. Waves Appl. 34 (6), 802–824 (2020).
Article
Google Scholar
M. D. Malykh, N. E. Nikolaev, L. A. Sevastianov, and A. A. Tiutiunnik, “On the representation of electromagnetic fields in closed waveguides using four scalar potentials,” J. Electromagnet. Waves Appl. 32 (7), 886–898 (2018).
Article
Google Scholar
W. C. Chew, Lectures on Theory of Microwave and Optical Waveguides (2012). wcchew.ece.illinois.edu.
M. D. Malykh and L. A. Sevast’yanov, “On the representation of electromagnetic fields in discontinuously filled closed waveguides by means of continuous potentials,” Comput. Math. Math. Phys. 59 (2), 330–342 (2019).
MathSciNet
Article
Google Scholar
A. A. Tyutyunnik, “Computation of electromagnetic fields in closed waveguides with an inhomogeneous filling,” Vestn. RUDN, Ser. Mat. Inf. Fiz. 26 (2), 129–139 (2018).
Google Scholar
M. D. Malykh, D. V. Divakov, A. A. Egorov, and Ya. Yu. Kuziv, “Calculation of the normal modes of closed waveguides,” Discrete Continuous Models Appl. Comput. Sci. 28 (1), 62–76 (2020).
Article
Google Scholar
A. S. Zil’bergleit and Yu. I. Kopilevich, Spectral Theory of Regular Waveguides (Fiz.-Tekh. Inst., Leningrad, 1983) [in Russian].
Google Scholar
A. N. Bogolyubov and M. D. Malykh, “Remark on the radiation conditions for an irregular waveguide,” Comput. Math. Math. Phys. 43 (4), 560–563 (2003).
MathSciNet
MATH
Google Scholar
R. Courant and D. Hilbert, Methoden der mathematischen Physik (Springer, Berlin, 1924), Vol. 1.
Book
Google Scholar
I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space (Moscow, Nauka, 1965; Am. Math. Soc., Providence, R.I., 1969).
A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils (Shtiintsa, Chisinau, 1986) [in Russian].
MATH
Google Scholar
N. D. Kopachevsky, Spectral Theory of Operator Pencils: A Special Course of Lectures (Forma, Simferopol, 2009) [in Russian].
Google Scholar
F. Hecht, Freefem++, 3rd ed. (Lab. Jacques-Louis Lions, Univ. Pierre et Marie Curie, Paris, 2018). www. freefem.org.
MATH
Google Scholar