Skip to main content

Modeling Flexible Manipulators without Inverting Their Mass Matrices

Abstract

In modern scientific literature, much attention is paid to optimal modeling of flexible dynamic systems. The importance of such studies is dictated by the ever-increasing demand of high-precision robotic manipulators and automatic mechanisms in the theory of control. This demand consists in the need for continuous adjustment of the movement of their effectors in real time, taking into account the compliance of the constituent links of these systems. The generalized Newton–Euler method formulated in this connection provides a reliable platform for the subsequent construction of modifications that accelerate the dynamic analysis of different classes of elastodynamic systems faster. A version of this method designed for optimal modeling of flexible manipulators is proposed that does not use the well-known procedure of inverting their mass matrices.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. J. Y. S. Luh, M. W. Walker, and R. Paul, “On-line computational scheme for mechanical manipulators,” Trans. ASME. J. Dynamic Syst., Meas. Control 74, 251–269 (1980).

    Google Scholar 

  2. F. Boyer and P. Coiffet, “Generalization of Newton–Euler model for flexible manipulators,” Int. J. Rob. Syst. 13 (1), 11–24 (1996).

    Article  Google Scholar 

  3. F. Boyer and P. Coiffet, “Symbolic modeling of a flexible manipulator via assembling of its generalized Newton–Euler model,” Int. J. Mechanism Machine Theor. 31 (1), 45–56 (1996).

    Article  Google Scholar 

  4. F. Boyer and W. Khalil, “An efficient calculation of flexible manipulators inverse dynamics,” Int. J. Rob. Res. 17 (3), 282–293 (1998).

    Article  Google Scholar 

  5. Yu. L. Sarkisyan, K. G. Stepanyan, N. Azus, and H. A. Gevorgyan, “Dynamic analysis of flexible manipulators by the generalized Newton–Euler method,” Izv. Nat. Akad. Nauk Resp. Armenia, Gos. Inzh. Univ. Armenia, Ser. Tekhn. Nauki 57, 3–10 (2004).

  6. Yu. L. Sarkisyan, K. G. Stepanyan, and H. A. Gevorgyan, “Dynamic analysis of elastic arborescent dynamic systems without external bonds,” Izv. Nat. Akad. Nauk Resp. Armenia, Gos. Inzh. Univ. Armenia, Ser. Tekhn. Nauki 59, 3–9 (2006).

  7. H. A. Gevorgyan, “Dynamic analysis of spatial flexible manipulators by the generalized Newton–Euler method,” Proc. of the Int. Conf. Devoted to the 65th Anniversary of the department of Mechanical Engineering of GIUA, 2010, pp. 126–128.

  8. H. A. Gevorgyan, “Application of the generalized Newton–Euler method to optimal control problems of flexible mechanisms,” Izv. Nat. Akad. Nauk Resp. Armenia, Gos. Inzh. Univ. Armenia, Gos. Inzh. Univ. Armenia, Ser. Tekhn. Nauki 63, 133–138 (2010).

  9. H. A. Gevorgyan, “Principle of formal and methodological optimization of the dynamic analysis of multilink systems,” Izv. Nat. Akad. Nauk Resp. Armenia, Gos. Inzh. Univ. Armenia, Ser. Tekhn. Nauki 70, 401–410 (2017).

  10. Jing Xie, “Dynamic modeling and control of flexible manipulators,” Adv. Eng. Res. 138, 270–275, Proc. of the 2nd Int. Conf. on Machinery, Electronics and Control Simulation (MECS 2017).

  11. L. Bascetta, G. Ferretti, and B. Scaglioni, “Closed form Newton–Euler dynamic model of flexible manipulators,” Robotics 35, 1006–1030 (2017).

    MATH  Google Scholar 

  12. H. A. Gevorgyan, “Optimization of the motion of a flexible servo manipulator,” Izv. Ross. Akad. Nauk, Ser. Mekh. Tverd. Tela, No. 2, 124–132 (2021).

  13. O. Verlinden, “Simulation du comportement dynamique de systèmes multicorps flexibles comportant des membrures de forme complexe,” Thèse de doctorat de la Faculté Polytechnique de Mons (1994).

  14. S. S. Kim and E. J. Haug, “A recursive formulation for flexible multibody dynamics, Part I: open-loop systems,” Comput. Meth. Appl. Mech. Eng. 74, 293–314 (1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Gevorgyan.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gevorgyan, H.A. Modeling Flexible Manipulators without Inverting Their Mass Matrices. Comput. Math. and Math. Phys. 62, 508–515 (2022). https://doi.org/10.1134/S096554252203006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554252203006X

Keywords:

  • elastic dynamic systems
  • symbolic computations
  • generalized Newton–Euler method
  • superelement
  • mixed dynamic model
  • numerical integration
  • matrix of iterations
  • Newton–Raphson metod