V. G. Danilov, V. P. Maslov, and K. A. Volosov, Mathematical Modeling of Heat and Mass Transfer Processes (Kluwer, Dordrecht, 1995).
MATH
Google Scholar
V. F. Butuzov and A. B. Vasil’eva, “Singularly perturbed problems with boundary and interior layers: Theory and applications,” Adv. Chem. Phys. 97, 47–179 (1997).
Google Scholar
Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res.: Atm. 116 (D23), 23206 (2010).
Google Scholar
H. Egger, K. Fellner, J.-F. Pietschmann, and B. Q. Tang, “Analysis and numerical solution of coupled volume-surface reaction–diffusion systems with application to cell biology,” Appl. Math. Comput. 336, 351–367 (2018).
MathSciNet
MATH
Google Scholar
N. M. Yaparova, “Method for determining particle growth dynamics in a two-component alloy,” Steel Transl. 50 (2), 95–99 (2020).
Google Scholar
X. Wu and M. Ni, “Existence and stability of periodic contrast structure in reaction–advection–diffusion equation with discontinuous reactive and convective terms,” Commun. Nonlinear Sci. Numer. Simul. 91, 105457 (2020).
G. Lin, Y. Zhang, X. Cheng, M. Gulliksson, P. Forssen, and T. Fornstedt, “A regularizing Kohn–Vogelius formulation for the model-free adsorption isotherm estimation problem in chromatography,” Appl. Anal. 97 (1), 13–40 (2018).
MathSciNet
MATH
Google Scholar
Y. Zhang, G. Lin, M. Gulliksson, P. Forssen, T. Fornstedt, and X. Cheng, “An adjoint method in inverse problems of chromatography,” Inverse Probl. Sci. Eng. 25 (8), 1112–1137 (2017).
MathSciNet
MATH
Google Scholar
A. I. Volpert, V. A. Volpert, and Vl. A. Volpert, Traveling Wave Solutions of Parabolic Systems (Am. Math. Soc., Providence, R.I., 2000).
H. Meinhardt, Models of Biological Pattern Formation (Academic, London, 1982).
Google Scholar
R. FitzHugh, “Impulses and physiological states in theoretical model of nerve membrane,” Biophys. J. l (1), 445–466 (1961).
Google Scholar
J. D. Murray, Mathematical Biology, Vol 1: An Introduction (Springer, New York, 2002).
H. Egger, J.-F. Pietschmann, and M. Schlottbom, “Identification of nonlinear heat conduction laws,” J. Inverse Ill-Posed Probl. 23 (5), 429–437 (2015).
MathSciNet
MATH
Google Scholar
A. Gholami, A. Mang, and G. Biros, “An inverse problem formulation for parameter estimation of a reaction–diffusion model of low grade gliomas,” J. Math. Biol. 72 (1–2), 409–433 (2016).
MathSciNet
MATH
Google Scholar
R. R. Aliev and A. V. Panfilov, “A simple two-variable model of cardiac excitation,” Chaos Solitons Fractals 7 (3), 293–301 (1996).
Google Scholar
E. A. Generalov, N. T. Levashova, A. E. Sidorova, P. M. Chumankov, and L. V. Yakovenko, “An autowave model of the bifurcation behavior of transformed cells in response to polysaccharide,” Biophysics 62 (5), 876–881 (2017).
Google Scholar
A. Mang, A. Gholami, C. Davatzikos, and G. Biros, “PDE-constrained optimization in medical image analysis,” Optim. Eng. 19 (3), 765–812 (2018).
MathSciNet
MATH
Google Scholar
S. I. Kabanikhin and M. A. Shishlenin, “Recovering a time-dependent diffusion coefficient from nonlocal data,” Numer. Anal. Appl. 11, 38–44 (2018).
MathSciNet
MATH
Google Scholar
V. Mamkin, J. Kurbatova, V. Avilov, Yu. Mukhartova, A. Krupenko, D. Ivanov, N. Levashova, and A. Olchev, “Changes in net ecosystem exchange of CO2, latent and sensible heat fluxes in a recently clear-cut spruce forest in Western Russia: Results from an experimental and modeling analysis,” Environ. Res. Lett. 11 (12), 125012 (2016).
N. T. Levashova, J. V. Muhartova, and A. V. Olchev, “Two approaches to describe the turbulent exchange within the atmospheric surface layer,” Math. Models Comput. Simul. 9 (6), 697–707 (2017).
MathSciNet
MATH
Google Scholar
N. Levashova, A. Sidorova, A. Semina, and M. Ni, “A spatio-temporal autowave model of shanghai territory development,” Sustainability 11 (13), 3658 (2019).
Google Scholar
S. A. Zakharova, M. A. Davydova, and D. V. Lukyanenko, “A spatio-temporal autowave model of shanghai territory development,” Inverse Probl. Sci. Eng. 29 (3), 365–377 (2020).
Google Scholar
V. M. Isakov, S. I. Kabanikhin, A. A. Shananin, M. A. Shishlenin, and S. Zhang, “Algorithm for determining the volatility function in the Black–Scholes model,” Comput. Math. Math. Phys. 59 (10), 1753–1758 (2019).
MathSciNet
MATH
Google Scholar
M. K. Kadalbajoo and V. Gupta, “A brief survey on numerical methods for solving singularly perturbed problems,” Appl. Math. Comput. 217 (18), 3641–3716 (2010).
MathSciNet
MATH
Google Scholar
J. R. Cannon and P. DuChateau, “An inverse problem for a nonlinear diffusion equation,” SIAM J. Appl. Math. 39 (2), 272–289 (1980).
MathSciNet
MATH
Google Scholar
P. DuChateau and W. Rundel, “Unicity in an inverse problem for an unknown reaction term in a reaction–diffusion equation,” J. Differ. Equations 59, 155–165 (1985).
MathSciNet
MATH
Google Scholar
M. S. Pilant and W. Rundell, “An inverse problem for a nonlinear parabolic equation,” Commun. Partial Differ. Equations 11 (4), 445–457 (1986).
MathSciNet
MATH
Google Scholar
S. I. Kabanikhin, “Definitions and examples of inverse and ill-posed problems,” J. Inverse Ill-Posed Probl. 16 (4), 317–357 (2008).
MathSciNet
MATH
Google Scholar
S. I. Kabanikhin, Inverse and Ill-Posed Problems Theory and Applications (De Gruyter, Berlin, 2011).
Google Scholar
B. Jin and W. Rundell, “A tutorial on inverse problems for anomalous diffusion processes,” Inverse Probl. 31, 035003 (2015).
A. Belonosov and M. Shishlenin, “Regularization methods of the continuation problem for the parabolic equation,” Lect. Notes Comput. Sci. 10187, 220–226 (2017).
MathSciNet
MATH
Google Scholar
B. Kaltenbacher and W. Rundell, “On the identification of a nonlinear term in a reaction–diffusion equation,” Inverse Probl. 35, 115007 (2019).
A. Belonosov, M. Shishlenin, and D. Klyuchinskiy, “A comparative analysis of numerical methods of solving the continuation problem for 1D parabolic equation with the data given on the part of the boundary,” Adv. Comput. Math. 45 (2), 735–755 (2019).
MathSciNet
MATH
Google Scholar
B. Kaltenbacher and W. Rundell, “The inverse problem of reconstructing reaction–diffusion systems,” Inverse Probl. 36 (065011) (2020).
D. V. Lukyanenko, M. A. Shishlenin, and V. T. Volkov, “Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction–diffusion–advection equation with the final time data,” Commun. Nonlinear Sci. Numer. Simul. 54, 233–247 (2018).
MathSciNet
MATH
Google Scholar
D. V. Lukyanenko, I. V. Prigorniy, and M. A. Shishlenin, “Some features of solving an inverse backward problem for a generalized Burgers’ equation,” J. Inverse Ill-posed Probl. 28 (5), 641–649 (2020).
MathSciNet
MATH
Google Scholar
D. V. Lukyanenko, A. A. Borzunov, and M. A. Shishlenin, “Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction–diffusion–advection type with data on the position of a reaction front,” Commun. Nonlinear Sci. Numer. Simul. 99, 105824 (2021).
D. Lukyanenko, T. Yeleskina, I. Prigorniy, T. Isaev, A. Borzunov, and M. Shishlenin, “Inverse problem of recovering the initial condition for a nonlinear equation of the reaction–diffusion–advection type by data given on the position of a reaction front with a time delay,” Mathematics 9 (4), 342 (2021).
Google Scholar
D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, and M. A. Shishlenin, “Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data,” Comput. Math. Appl. 77 (5), 1245–1254 (2019).
MathSciNet
MATH
Google Scholar
D. V. Lukyanenko, M. A. Shishlenin, and V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction–diffusion–advection equation,” J. Inverse Ill-Posed Probl. 27 (5), 745–758 (2019).
MathSciNet
MATH
Google Scholar
A. B. Vasil’eva, V. F. Butuzov, and N. N. Nefedov, “Singularly perturbed problems with boundary and internal layers,” Proc. Steklov Inst. Math. 268, 258–273 (2010).
MathSciNet
MATH
Google Scholar
A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer Academic, Dordrecht, 1995).
MATH
Google Scholar
O. M. Alifanov, E. A. Artuhin, and S. V. Rumyantsev, Extreme Methods for the Solution of Ill-Posed Problems (Nauka, Moscow, 1988) [in Russian].
Google Scholar
S. I. Kabanikhin and M. A. Shishlenin, “Quasi-solution in inverse coefficient problems,” J. Inverse Ill-Posed Probl. 16 (7), 705–713 (2008).
MathSciNet
MATH
Google Scholar
E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Vol. 2: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996).
H. H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations,” Computer J. 5 (4), 329–330 (1963).
MathSciNet
MATH
Google Scholar
A. Alshin, E. Alshina, N. Kalitkin, and A. Koryagina, “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems,” Comput. Math. Math. Phys. 46, 1320–1340 (2006).
MathSciNet
Google Scholar
X. Wen, “High order numerical methods to a type of delta function integrals,” J. Comput. Phys. 226 (2), 1952–1967 (2007).
MathSciNet
MATH
Google Scholar
H. Egger, H. W. Engl, and M. V. Klibanov, “Global uniqueness and holder stability for recovering a nonlinear source term in a parabolic equation,” Inverse Probl. 21 (1), 271–290 (2005).
MATH
Google Scholar
L. Belina and M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem,” SIAM J. Sci. Comput. 31 (1), 478–509 (2008).
MathSciNet
MATH
Google Scholar
M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong, J. Schenk, “Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem,” Inverse Probl. 26 (4), 045003 (2010).
D. Chaikovskii and Y. Zhang, “Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations,” (2021). arXiv:2106.15249 [math.NA].
A. G. Yagola, A. S. Leonov, and V. N. Titatenko, “Data errors and an error estimation for ill-posed problems,” Inverse Probl. Eng. 10 (2), 117–129 (2002).
Google Scholar
K. Y. Dorofeev, V. N. Titatenko, and A. G. Yagola, “Algorithms for constructing a posteriori errors of solutions to ill-posed problems,” Comput. Math. Math. Phys. 43 (1), 10–23 (2003).
MathSciNet
Google Scholar
A. S. Leonov, “A posteriori accuracy estimations of solutions to ill-posed inverse problems and extra-optimal regularizing algorithms for their solution,” Numer. Anal. Appl. 5 (1), 68–83 (2012).
MATH
Google Scholar