A. P. Oskolkov, “Unsteady flows of viscoelastic fluids,” Proc. Steklov Inst. Math. 159, 105–134 (1984).
MATH
Google Scholar
A. P. Oskolkov, “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids,” J. Sov. Math. 10, 299–335 (1978).
Article
Google Scholar
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd ed. (Gordon and Breach, New York, 1969; Nauka, Moscow, 1970).
A. P. Oskolkov, “Theory of Voight fluids,” J. Sov. Math. 21, 818–821 (1983).
Article
Google Scholar
A. P. Oskolkov, “Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids,” Proc. Steklov Inst. Math. 179, 137–182 (1989).
MATH
Google Scholar
A. P. Oskolkov, M. M. Achmatov, and A. A. Cotsiolis, “On the equations of motion of linear viscoelastic fluids and the equations of filtration of fluids with delay,” Zap. Nauchn. Semin. LOMI Akad. Nauk SSSR 163, 132–136 (1987).
MATH
Google Scholar
A. P. Oskolkov, “Nonlocal problems for one class of nonlinear operator equations that arise in the theory of Sobolev type equations,” J. Sov. Math. 64, 724–735 (1993).
MathSciNet
Article
Google Scholar
G. A. Sviridyuk and T. G. Sukacheva, “Phase spaces of a class of operator semilinear equations of Sobolev type,” Differ. Equations 26 (2), 188–195 (1990).
MathSciNet
MATH
Google Scholar
G. A. Sviridyuk and T. G. Sukacheva, “On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid,” Math. Notes 63 (3), 388–395 (1998).
MathSciNet
Article
Google Scholar
A. O. Kondyukov and T. G. Sukacheva, “Phase space of the initial–boundary value problem for the Oskolkov system of nonzero order,” Comput. Math. Math. Phys. 55 (5), 823–828 (2015).
MathSciNet
Article
Google Scholar
A. O. Kondyukov and T. G. Sukacheva, “A non-stationary model of the incompressible viscoelastic Kelvin–Voigt fluid of nonzero order in the magnetic field of the Earth,” Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Software 12 (3), 42–51 (2019).
MATH
Google Scholar
G. Avalos, I. Lasiecka, and R. Triggiani, “Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system,” Georgian Math. J. 15 (3), 403–437 (2008).
MathSciNet
Article
Google Scholar
G. Avalos and R. J. Triggiani, “Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid–structure interaction,” Differ. Equations 245, 737–761 (2008).
MathSciNet
Article
Google Scholar
K. V. Vasyuchkova, N. A. Manakova, and G. A. Sviridyuk, “Some mathematical models with a relatively bounded operator and additive 'white noise',” Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Software 10 (4), 5–14 (2017).
MATH
Google Scholar
G. A. Sviridyuk, A. A. Zamyshlyaeva, and S. A. Zagrebina, “Multipoint initial-final value for one class of Sobolev type models of higher order with additive ‘white noise’,” Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Software 11 (3), 103–117 (2018).
MATH
Google Scholar
A. Favini, S. A. Zagrebina, and G. A. Sviridyuk, “Multipoint initial-final value problems for dynamical Sobolev-type equations in the space of noises,” Electron. J. Differ. Equations 2018 (128), 1–10 (2018). https://ejde.math.txstate.edu/Volumes/2018/128/favini.pdf.
MathSciNet
MATH
Google Scholar
O. A. Oleinik, “On a system of equations in boundary layer theory,” USSR Comput. Math. Math. Phys. 3 (3), 650–673 (1963).
MathSciNet
Article
Google Scholar