Skip to main content
Log in

Mathematical Model of a Magnetic Tornado

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A mathematical model of a magnetic tornado in a magnetohydrodynamic plasma, based on the apparatus of continuum mechanics and Maxwell’s electrodynamics, is proposed. In the context of two specific examples, the mutual influence of plasma and magnetic field dynamics, which gives rise to a magnetic tornado, is studied. Of particular interest is the interaction of a plasma and a magnetic field when an ideal plasma moves along the magnetic field lines. In this case, the study of a magnetic tornado is reduced to a purely hydrodynamic case of a tornado in atmospheric air. The numerical results obtained give theoretical confirmation of the existence of vortical formations observed in the chromosphere of the solar plasma, identified with a magnetic super-tornado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Parker, “Nanoflares and the solar X-ray corona,” Astrophys. J. 330, 474–479 (1988).

    Article  Google Scholar 

  2. P. Brandt, G. Scharmer, S. Ferguson, R. Shine, and T. Tarbell, “Vortex flow in the solar photosphere,” Nature 335, 238–240 (1988).

    Article  Google Scholar 

  3. J. Bonet, I. Marquez, J. Sanchez Almeida, I. Cabello, and V. Domingo, “Convectively driven vortex flows in the Sun,” Astrophys. J. 687, L131–L134 (2008).

    Article  Google Scholar 

  4. J. Bonet et al., “SUNRISE/IMaX observations of convectively driven vortex flows in the Sun,” Astrophys. J. 723, L139–L143 (2010).

    Article  Google Scholar 

  5. S. Wedemeyer-Böhm, E. Scullion, O. Steiner, L. R. van der Voort, J. de la Cruz Rodriguez, V. Fedun, and R. Erdélyi, “Magnetic tornadoes as energy channels into the solar corona,” Nature 486, 505–508 (2012).

    Article  Google Scholar 

  6. D. V. Nalivkin, Hurricanes, Storms, and Tornadoes: Geographical Features and Geological Activities (Nauka, Leningrad, 1969) [in Russian].

    Google Scholar 

  7. A. Yu. Varaksin, M. E. Romash, and V. N. Kopeitsev, Tornados (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  8. S. P. Bautin, Mathematical Modeling of Strong Gas Compression (Nauka, Novosibirsk, 2007) [in Russian].

    Google Scholar 

  9. L. D. Grasso and W. R. Cotton, “Numerical simulation of a tornado vortex,” J. Atm. Sci. 52 (8), 1192–1203 (1995).

    Article  Google Scholar 

  10. J. B. Klemp and R. B. Wilhelmson, “The simulation of three dimensional convective storm dynamics,” J. Atm. Sci. 35 (6), 1070–1096 (1978).

    Article  Google Scholar 

  11. R. Rotunno, “Numerical simulation of a tornado vortex,” J. Atm. Sci. 34 (12), 1942–1956 (1977).

    Article  Google Scholar 

  12. M. B. Gavrikov and A. A. Taiurskii, Preprint No. 42, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2019).

  13. M. B. Gavrikov and A. A. Taiurskii, “A mathematical model of tornado,” J. Phys. Conf. Ser. 1336 (012001), 1–11 (2019).

    Article  Google Scholar 

  14. H. Alfven and C.-G. Falthammer, Cosmical Electrodynamics (Oxford Univ. Press, London, 1963).

    MATH  Google Scholar 

  15. N. V. Filippov, “Review of experimental studies of plasma focus performed at Kurchatov Institute,” Fiz. Plazmy 9 (1), 25–44 (1983).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

  17. S. Lundquist, “Experimental investigation of magneto-hydrodynamic waves,” Phys. Rev. 76 (12), 1805–1809 (1949).

    Article  Google Scholar 

  18. T. Karman, “Über laminare und turbulente Reibung,” Z. Angew. Math. Mech. 1, 244–247 (1921).

    MATH  Google Scholar 

  19. V. V. Sychev, “On the motion of a viscous electrically-conducting liquid under the action of a rotating disk in the presence of a magnetic field,” J. Appl. Math. Mech. 24 (5), 1360–1364 (1960).

    Article  Google Scholar 

  20. V. P. Shidlovskii, “Study of viscous electrically conducting fluid flow driven by a rotating disk in an axial magnetic field,” Magn. Gidrodin. 6 (1), 93–97 (1966).

    Google Scholar 

  21. A. G. Kulikovskii and G. A. Lyubimov, Magnetohydrodynamics (Addison-Wesley, Reading, Mass., 1965; Logos, Moscow, 2005).

  22. Modern Numerical Methods for Ordinary Differential Equations, Ed. by G. Hall and J. M. Watt (Clarendon, Oxford, 1976).

    MATH  Google Scholar 

  23. R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems (Elsevier, New York, 1965).

    MATH  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987; Nauka, Moscow, 1988).

  25. P. G. Drazin, Introduction to Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  26. M. B. Gavrikov and A. A. Taiurskii, Preprint No. 48, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2020).

  27. M. B. Gavrikov and A. A. Taiurskii, Preprint No. 42, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2020).

Download references

Funding

This work was supported by the Moscow Center for Fundamental and Applied Mathematics, agreement with the Ministry of Science and Higher Education of the Russian Federation no. 075-15-2019-1623.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. B. Gavrikov or A. A. Tayurskii.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrikov, M.B., Tayurskii, A.A. Mathematical Model of a Magnetic Tornado. Comput. Math. and Math. Phys. 61, 1532–1545 (2021). https://doi.org/10.1134/S0965542521090086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521090086

Keywords:

Navigation