Skip to main content
Log in

Elaboration of the Fast Boundary Element Method for 3D Simulation of the Dynamics of a Bubble Cluster with Solid Particles in an Acoustic Field

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An efficient numerical approach to the study of the dynamics of a cluster containing bubbles and solid particles under the action of an acoustic field in the 3D case is presented. The numerical method is a combination of the boundary element method (BEM) and the fast multipole method (FMM) for the Laplace equation. The hardware acceleration of the computation of a bubble cluster doped with solid particles is achieved due to parallel computations on graphics processing units (GPU). The efficiency of the proposed method is confirmed by computations for a structured cubic cluster consisting of bubbles and solid spherical particles. The dynamics of the bubble cluster depending on its size is analyzed, and it is shown that as the cluster size increases, the mobility of the bubbles and particles, the amplitude of the change in the cluster volume, the volume of individual bubbles, and the deformation of outermost bubbles of the cluster decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Ralston and S. S. Dukhin, “The interaction between particles and bubbles,” Colloids Surfaces A. 151, 3–14 (1999).

    Article  Google Scholar 

  2. C. M. Phan, A. V. Nguyen, J. D. Miller, G. M. Evans, and G. J. Jameson, “Investigations of bubble-particle interactions,” Int. J. Miner. Process. 72, 239–254 (2003).

    Article  Google Scholar 

  3. A. V. Nguyen, J. Ralston, and H. J. Schulze, “On modelling of bubble-particle attachment probability in flotation,” Int. J. Miner. Process. 53, 225–249 (1998).

    Article  Google Scholar 

  4. V. Sarrot, Z. Huang, D. Legendre, and P. Guiraud, “Experimental determination of particles capture efficiency in flotation,” Chem. Eng. Sci. 62, 7359–7369 (2007).

    Article  Google Scholar 

  5. Z. Dai, D. Fornasiero, and J. Ralston, “Particle-bubble collision models—A review,” Adv. Colloid Interface Sci. 96, 254 (2000).

    Google Scholar 

  6. P. T. L. Koh, M. Manickam, and M. P. Schwarz, “CFD simulation of bubble-particle collisions in mineral flotation cells,” Minerals Eng. 13, 1455–1463 (2000).

    Article  Google Scholar 

  7. P. T. L. Koh and M. P. Schwarz, “CFD modelling of bubble-particle collision rates and efficiencies in a flotation cell,” Minerals Eng. 16, 1055–1059 (2003).

    Article  Google Scholar 

  8. R. H. Yoon, “The role of hydrodynamic and surface forces in bubble-particle interaction,” Int. J. Miner. Process. 58, 129–143 (2000).

    Article  Google Scholar 

  9. A. Nguyen and G. M. Evans, “The liquid flow force on a particle in the bubble-particle interaction in flotation,” J. Colloid Interface Sci. 246, 100–104 (2002).

    Article  Google Scholar 

  10. A. Nguyen, J. Nalaskowski, and J. D. Miller, “A study of bubble-particle interaction using atomic force microscopy,” Minerals Eng. 16, 1173–1181 (2003).

    Article  Google Scholar 

  11. D. J. Johnson, N. J. Miles, and N. Hilal, “Quantification of particle-bubble interactions using atomic force microscopy: A review,” Adv. Colloid Interface Sci. 127, 67–81 (2006).

    Article  Google Scholar 

  12. T. Hong, L. S. Fan, and D. J. Lee, “Force variations on particle induced by bubble-particle collision,” Int. J. Multiphase Flow 20, 117–129 (1999).

    MATH  Google Scholar 

  13. A. V. Nguyen and G. M. Evans, “Attachment interaction between air bubbles and particles in froth flotation,” Exp. Therm. Fluid. Sci. 28, 381–385 (2004).

    Article  Google Scholar 

  14. D. I. Verrelli, P. T. L. Koh, and A. V. Nguyen, “Particle-bubble interaction and attachment in flotation,” Chem. Eng. Sci. 66, 5910–5921 (2011).

    Article  Google Scholar 

  15. P. Basarova, V. Machon, M. Hubicka, and D. Horn, “Collision processes involving a single rising bubble and a larger stationary spherical particle,” Int. J. Miner. Process. 94, 58–66 (2010).

    Article  Google Scholar 

  16. T. A. Hay, A Model of the Interaction of Bubbles and Solid Particles under Acoustic Excitation, Ph.D. Dissertation, 2008.

  17. J. J. Dongarra and F. Sullivan, “The top 10 algorithms,” Comput. Sci. Eng. 2, 22–23 (2000).

    Article  Google Scholar 

  18. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348 (1987).

    Article  MathSciNet  Google Scholar 

  19. N. A. Gumerov and R. Duraiswami, “A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation,” J. Acoust. Soc. Am. 125, 191–205 (2009).

    Article  Google Scholar 

  20. N. Nishimura, “Fast multipole accelerated boundary integral equation methods,” Appl. Mech. Rev. 55 (4), 299–324 (2002).

    Article  Google Scholar 

  21. N. A. Gumerov and R. Duraiswami, “Fast multipole methods on graphics processors,” J. Comput. Phys. 227, 8290–8313 (2008).

    Article  MathSciNet  Google Scholar 

  22. S. C. Li, B. C. Khoob, A. M. Zhang, and S. Wang, “Bubble-sphere interaction beneath a free surface,” Ocean Eng. 169, 469–483 (2018).

    Article  Google Scholar 

  23. S. C. Li, B. C. Khoob, A. M. Zhang, S. Wang, and R. Han, “Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow,” Phys. Fluids 30, (8), 082111 (2018).

    Article  Google Scholar 

  24. Yu. A. Pityuk, N. A. Gumerov, O. A. Abramova, I. A. Zarafutdinov, and I. Sh. Akhatov, “Accelerated boundary element method for 3D simulations of bubble cluster dynamics in an acoustic field,” Commun. Comput. Inf. Sci. (CCIS) 1063, 335–349 (2019).

    MATH  Google Scholar 

  25. I. A. Zarafutdinov, A. R. Gainetdinov, Yu. A. Pityuk, O. A. Abramova, N. A. Gumerov, and I. Sh. Akhatov, “GPU acceleration of bubble-particle dynamics simulation,” Commun. Comput. Inf. Sci. (CCIS) 910, 235–250 (2018).

    Google Scholar 

  26. Yu. A. Pityuk (Yu. A. Itkulova), O. A. Abramova, N. A. Gumerov, and I. Sh. Akhatov, “Simulation of bubble dynamics in 3D potential flows on heterogeneous computers using the fast multipole method and boundary element method,” Vychisl. Met. Program. 15, 239–257 (2014).

    Google Scholar 

  27. A. V. Skvortsov, Delaunay Triangulation and Its Applications (Tomsk, Tomsk. Gos. Univ., 2002) [in Russian].

  28. N. A. Gumerov, R. Duraiswami, and E. A. Borovikov, Data structures, optimal choice of parameters, and complexity results for generalized multilevel fast multipole method in d dimensions, Technical Report CS-TR-4458, College Park: Univ. of Maryland, 2003.

Download references

ACKNOWLEDGMENTS

We are grateful to N.A. Gumerov (the University of Maryland Institute of Advanced Computer Studies, USA) for the statement of the problem and to the company Fantalgo, LLC (Maryland, USA) for the FMM library.

Funding

This work was supported by the Russian Science Foundation, project no. 18-71-00068.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Zarafutdinov, Yu. A. Pityuk or O. A. Solnyshkina.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarafutdinov, I.A., Pityuk, Y.A. & Solnyshkina, O.A. Elaboration of the Fast Boundary Element Method for 3D Simulation of the Dynamics of a Bubble Cluster with Solid Particles in an Acoustic Field. Comput. Math. and Math. Phys. 61, 625–637 (2021). https://doi.org/10.1134/S0965542521040138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521040138

Keywords:

Navigation