Skip to main content
Log in

On Regularity of Weak Solutions to a Generalized Voigt Model of Viscoelasticity

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The existence and uniqueness of a strong solution to the initial-boundary value problem for a system of fluid dynamics equations that is a fractional analogue of the Voigt viscoelasticity model in the plane case are established. The rheological equation of this model involves fractional derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Gyarmati, Nonequilibrium Thermodynamics: Field Theory and Variational Principles (Springer-Verlag, Berlin, 1970).

    Google Scholar 

  2. E. N. Ogorodnikov, V. P. Radchenko, and N. S. Yashagin, “Rheological model of viscoelastic body with memory and differential equations of fractional oscillator,” Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki 22 (1), 255–268 (2011).

    MATH  Google Scholar 

  3. F. Mairandi and G. Spada, “Creep, relaxation and viscosity properties for basic fractional models in rheology,” Eur. Phys. J. Special Topics 193, 133–160 (2011).

    Article  Google Scholar 

  4. V. G. Zvyagin, “On the solvability of some initial–boundary value problems for mathematical models of motion of nonlinear viscous and viscoelastic fluids,” Sovrem. Mat. Fundam. Napravlen. 2, 57–69 (2003).

    Google Scholar 

  5. V. G. Zvyagin and M. V. Turbin, Mathematical Issues of Viscoelastic Fluid Dynamics (Krasand URSS, Moscow, 2012) [in Russian].

    Google Scholar 

  6. V. G. Zvyagin and V. P. Orlov, “Some mathematical models in thermomechanics of continua,” J. Fixed Point Theory Appl. 15 (1), 3–47 (2014).

    Article  MathSciNet  Google Scholar 

  7. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order: Theory and Applications (Nauka i Tekhnika, Minsk, 1987; Gordon and Breach, London, 1993).

  8. V. P. Orlov, D. A. Rode, and M. A. Pliev, “Weak solvability of the generalized Voigt viscoelasticity model,” Sib. Math. J. 58 (5), 859–874 (2017).

    Article  MathSciNet  Google Scholar 

  9. V. G. Zvyagin and V. P. Orlov, “On solvability of an initial-boundary value problem for a viscoelasticity model with fractional derivatives,” Sib. Math. J. 59 (6), 1073–1089 (2018).

    Article  MathSciNet  Google Scholar 

  10. V. Zvyagin and V. Orlov, “Weak solvability of fractional Voigt model of viscoelasticity,” Discrete Continuous Dyn. Syst. Ser. A 38 (12), 6327–6350 (2018).

    Article  MathSciNet  Google Scholar 

  11. V. Zvyagin and V. Orlov, “On one problem of viscoelastic fluid dynamics with memory on an infinite time interval,” Discrete Continuous Dyn. Syst. Ser. 23 (9), 3855–3877 (2003).

    Article  MathSciNet  Google Scholar 

  12. V. G. Zvyagin and V. P. Orlov, “On the weak solvability of a fractional viscoelasticity model,” Dokl. Math. 98 (3), 568–570 (2018).

    Article  Google Scholar 

  13. V. G. Zvyagin and V. P. Orlov, “Weak solvability of a fractional Voigt viscoelasticity model,” Dokl. Math. 96 (2), 491–493 (2017).

    Article  MathSciNet  Google Scholar 

  14. G. Seregin, Lecture Notes on Regularity Theory for the Navier–Stokes Equations (World Scientific, Singapore, 2015).

    MATH  Google Scholar 

  15. J. C. Robinson, J. L. Rodrigo, and W. Sadowski, The Three-Dimensional Navier–Stokes Equations (Cambridge Univ. Press, Cambridge, 2016).

    Book  Google Scholar 

  16. V. P. Orlov and P. E. Sobolevskii, “On smoothness of weak solutions of the equation of motion of nearly Newtonian fluids,” Chislen. Metody Mekh. Sploshnoi sredy 16 (1), 107–119 (1985).

  17. V. P. Orlov and P. E. Sobolevskii, “On mathematical modes of a viscoelasticity with a memory,” Differ. Integral Equations 4 (1), 103–115 (1991).

    MATH  Google Scholar 

  18. V. P. Orlov, “On the strong solutions of a regularized model of a nonlinear visco-elastic medium,” Math. Notes 84 (2), 224–238 (2008).

    Article  MathSciNet  Google Scholar 

  19. V. P. Orlov and M. I. Parshin, “On a problem in the dynamics of a thermoviscoelastic medium with memory,” Comput. Math. Math. Phys. 55 (4), 650–665 (2015).

    Article  MathSciNet  Google Scholar 

  20. V. G. Zvyagin and V. P. Orlov, “On a model of thermoviscoelasticity of Jeffreys–Oldroyd type,” Comput. Math. Math. Phys. 56 (10), 1803–1812 (2016).

    Article  MathSciNet  Google Scholar 

  21. A. V. Zvyagin, V. G. Zvyagin, and D. M. Polyakov, “Dissipative solvability of an alpha model of fluid flow with memory,” Comput. Math. Math. Phys. 59 (7), 1185–1198 (2019).

    Article  MathSciNet  Google Scholar 

  22. V. T. Dmitrienko and V. G. Zvyagin, “On strong solutions of an initial-boundary value problem for a regularized model of an incompressible viscoelastic medium,” Russ. Math. 48 (9), 21–37 (2004).

    MathSciNet  MATH  Google Scholar 

  23. V. G. Zvyagin and D. A. Vorotnikov, “Survey of results and open problems concerning mathematical models of motion of Jeffreys-type viscoelastic media,” Vestn. Voronezh. Gos. Univ. Ser. Fiz. Mat., No. 2, 30–50 (2009).

  24. R. Temam, NavierStokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979).

    MATH  Google Scholar 

  25. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1969; Nauka, Moscow, 1970).

  26. P. P. Zabreiko, A. I. Koshelev, M. A. Krasnosel’skii, S. G. Mikhlin, A. S. Rakovshchik, and V. Ya. Stetsenko, Integral Equations: A Reference Text (Nauka, Moscow, 1968; Noordhoff, Leyden, 1975).

  27. V. G. Zvyagin and V. T. Dmitrienko, “On weak solutions of a regularized model of a viscoelastic fluid,” Differ. Equations 38 (12), 1731–1744 (2002).

    Article  MathSciNet  Google Scholar 

  28. V. G. Zvyagin and V. T. Dmitrienko, Approximative-Topological Approach to the Study of Hydrodynamic Problems (URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  29. K. Yosida, Functional Analysis (Springer-Verlag, Berlin, 1965).

    Book  Google Scholar 

  30. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967; Am. Math. Soc., Providence, R.I., 1968).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-11-00146.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Zvyagin or V. P. Orlov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V.G., Orlov, V.P. On Regularity of Weak Solutions to a Generalized Voigt Model of Viscoelasticity. Comput. Math. and Math. Phys. 60, 1872–1888 (2020). https://doi.org/10.1134/S0965542520110159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520110159

Keywords:

Navigation