Skip to main content
Log in

Asymptotics of the Riemann–Hilbert Problem for a Magnetic Reconnection Model in Plasma

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For the Riemann–Hilbert problem in a singularly deformed domain, an asymptotic expansion is found that corresponds to the limit transition from Somov’s magnetic reconnection model to Syrovatskii’s one as the relative shock front length \(\varrho \) tends to zero. It is shown that this passage to the limit corresponding to \(\varrho \to 0\) is performed with the preservation of the reverse current region, while the parameter determining magnetic field refraction on shock waves grows as \({{\varrho }^{{ - 1/2}}}\). Moreover, the correction term to the Syrovatskii field has the order of \(\rho \) and decreases in an inverse proportion to the distance from the current configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge Univ. Press, Cambridge, UK, 2000).

    Book  Google Scholar 

  2. E. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  3. B. V. Somov, Plasma Astrophysics, Part II: Reconnection and Flares (Springer Science + Business Media, New York, 2013).

  4. W. Gonzales and E. Parker, Magnetic Reconnection: Concepts and Applications (Springer Science + Business Media, New York, 2016).

  5. S. I. Syrovatskii, “Dynamic dissipation and particle acceleration,” Astron. Zh. 43 (2), 340–355 (1966).

    Google Scholar 

  6. V. S. Imshennik and S. I. Syrovatskii, “Two-dimensional flow of an ideally conducting gas in the vicinity of the zero line of a magnetic field,” J. Exp. Theor. Phys. 33 (5), 656–664 (1967).

    Google Scholar 

  7. S. I. Syrovatskii, “Formation of current sheets in a plasma with a frozen-in strong magnetic field,” J. Exp. Theor. Phys. 33 (5), 933–940 (1971).

    Google Scholar 

  8. B. V. Somov and S. I. Syrovatskii, “Hydrodynamic plasma flows in a strong magnetic field,” Neutral Current Sheets in Plasmas (Springer, Boston, MA, 1974), pp. 13–71.

    Google Scholar 

  9. P. F. Chen, C. Fang, Y. H. Tang, and M. D. Ding, “Simulation of magnetic reconnection with heat condition,” Astrophys. J. 513, 516–523 (1999).

    Article  Google Scholar 

  10. M. Ugai, “The evolution of fast reconnection in a three-dimensional current sheet system,” Phys. Plasmas 15, 082306 (2008).

    Article  Google Scholar 

  11. M. J. Aschwanden, Physics of the Solar Corona: An Introduction with Problems and Solutions (New York, 2005).

  12. P. A. Gritsyk and B. V. Somov, “X-ray and microwave emissions from the July 19, 2012 solar flare: Highly accurate observations and kinetic models,” Astron. Lett. 42 (8), 531–543 (2016).

    Article  Google Scholar 

  13. K. V. Brushlinskii, A. M. Zaborov, and S. I. Syrovatskii, “Numerical analysis of the current sheet near a magnetic null line,” Sov. J. Plasma Phys. 6 (2), 165–173 (1980).

    Google Scholar 

  14. D. Biskamp, “Magnetic reconnection via current sheets,” Phys. Fluids 29, 1520 (1986).

    Article  Google Scholar 

  15. H. E. Petschek, “Magnetic field annihilation,” AAS-NASA Symposium on the Physics of Solar Flares, Greebelt, October 28–30, 1963 (NASA SP-50, Maryland, 1964), pp. 425–439.

  16. S. A. Markovskii and B. V. Somov, “Some properties of the magnetic reconnection in a current sheet with shock waves,” Proceedings of the 6th Annual Seminar on Problems in Solar Flare Physics (Nauka, Moscow, 1988), pp. 93–110.

  17. S. A. Markovskii and B. V. Somov, “Some properties of the magnetic reconnection in a current sheet with shock waves,” in Solar Plasma Physics (Nauka, Moscow, 1989), p. 45 [in Russian].

    Google Scholar 

  18. S. I. Bezrodnykh and V. I. Vlasov, “The Riemann–Hilbert problem in a complicated domain for a model of magnetic reconnection in a plasma,” Comput. Math. Math. Phys. 42 (3), 263–298 (2002).

    MathSciNet  MATH  Google Scholar 

  19. S. I. Bezrodnykh, V. I. Vlasov, and B. V. Somov, “Analytical model of magnetic reconnection in the presence of shock waves attached to a current sheet,” Astron. Lett. 33 (2), 130–136 (2007).

    Article  Google Scholar 

  20. S. I. Bezrodnykh, V. I. Vlasov, and B. V. Somov, “Generalized analytical models of Syrovatskii’s current sheet,” Astron. Lett. 37 (2), 113–130 (2011).

    Article  Google Scholar 

  21. V. I. Vlasov, Boundary Value Problems in Domains with Curved Boundaries (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1987) [in Russian].

    Google Scholar 

  22. S. I. Bezrodnykh and V. I. Vlasov, “Singular Riemann–Hilbert problem in complex-shaped domains,” Comput. Math. Math. Phys. 54 (12), 1826–1875 (2014).

    Article  MathSciNet  Google Scholar 

  23. S. I. Bezrodnykh and V. I. Vlasov, “On a new representation for the solution of the Riemann–Hilbert problem,” Math. Notes 99 (6), 932–937 (2016).

    Article  MathSciNet  Google Scholar 

  24. S. I. Bezrodnykh, “Finding the coefficients in the new representation of the solution of the Riemann–Hilbert problem using the Lauricella function,” Math. Notes 101 (5), 759–777 (2017).

    Article  MathSciNet  Google Scholar 

  25. S. I. Bezrodnykh, “The Lauricella hypergeometric function \(F_{D}^{{(N)}}\), the Riemann–Hilbert problem, and some applications,” Russ. Math. Surv. 73 (6), 941–1031 (2018).

    Article  Google Scholar 

  26. V. I. Vlasov, S. A. Markovskii, and B. V. Somov, An analytical model of magnetic reconnection in plasma, Available from VINITI, No. 769-V89 (Moscow, 1989).

  27. W. Koppenfels and F. Stallmann, Praxis der Konformen Abbildung (Springer, Berlin, 1959).

    Book  Google Scholar 

  28. M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of Complex Variables (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  29. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdélyi (McGraw-Hill, New York, 1953), Vol. 1.

    Google Scholar 

  30. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  31. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow, 1962; Wiley, New York, 1964).

  32. H. Exton, Multiple Hypergeometric Functions and Application (Willey, New York, 1976).

    MATH  Google Scholar 

  33. O. M. Olsson, “Integration of the partial differential equations for the hypergeometric functions \({{F}_{1}}\) and \({{F}_{D}}\) of two and more variables,” J. Math. Phys. 5, 420–430 (1964).

    Article  MathSciNet  Google Scholar 

  34. F. D. Gakhov, Boundary Value Problems (Nauka, Moscow, 1977; Dover, New York, 1990).

  35. N. I. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1968; Wolters-Noordhoff, Groningen, 1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Bezrodnykh or V. I. Vlasov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrodnykh, S.I., Vlasov, V.I. Asymptotics of the Riemann–Hilbert Problem for a Magnetic Reconnection Model in Plasma. Comput. Math. and Math. Phys. 60, 1839–1854 (2020). https://doi.org/10.1134/S0965542520110056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520110056

Keywords:

Navigation