Skip to main content
Log in

Biharmonic Obstacle Problem: Guaranteed and Computable Error Bounds for Approximate Solutions

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper is concerned with an elliptic variational inequality associated with a free boundary obstacle problem for the biharmonic operator. We study the bounds of the difference between the exact solution (minimizer) of the corresponding variational problem and any function (approximation) from the energy class satisfying the prescribed boundary conditions and the restrictions stipulated by the obstacle. Using the general theory developed for a wide class of convex variational problems we deduce the error identity. One part of this identity characterizes the deviation of the function (approximation) from the exact solution, whereas the other is a fully computed value (it depends only on the data of the problem and known functions). In real life computations, this identity can be used to control the accuracy of approximate solutions. The measure of deviation from the exact solution used in the error identity contains terms of different nature. Two of them are the norms of the difference between the exact solutions (of the direct and dual variational problems) and corresponding approximations. Two others are not representable as norms. These are nonlinear measures vanishing if the coincidence set defined by means of an approximate solution satisfies certain conditions (for example, coincides with the exact coincidence set). The error identity is true for any admissible (conforming) approximations of the direct variable, but it imposes some restrictions on the dual variable. We show that these restrictions can be removed, but in this case the identity is replaced by an inequality. For any approximations of the direct and dual variational problems, the latter gives an explicitly computable majorant of the deviation from the exact solution. Several examples illustrating the established identities and inequalities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J.-L. Lions and G. Stampacchia, “Variational inequalities,” Commun. Pure Appl. Math. 20, 493–519 (1967).

    Article  Google Scholar 

  2. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéires (Dunod, Gauthier-Villars, Paris, 1969).

  3. L. A. Caffarelli and A. Friedman, “The obstacle problem for the biharmonic operator,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6 (1), 151–184 (1979).

    MathSciNet  MATH  Google Scholar 

  4. J. Frehse, “On the regularity of the solution of the biharmonic variational inequality,” Manuscr. Math. 9, 91–103 (1973).

    Article  MathSciNet  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1986).

  6. J. Frehse, “Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung,” Abh. Math. Sem. Univ. Hamburg 36, 140–149 (1971).

    Article  MathSciNet  Google Scholar 

  7. G. Cimatti, “The constrained elastic beam,” Meccanica 8, 119–124 (1973).

    Article  MathSciNet  Google Scholar 

  8. G. Stampacchia, “Su una disequazione variazionale legata al comportamento elastoplastico delle travi appoggiate agli estremi,” Boll. Un. Mat. Ital. 11 (3), suppl., 444–454 (1975).

  9. H. Brézis and G. Stampacchia, “Remarks on some fourth order variational inequalities,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (2), 363–371 (1977).

    MathSciNet  MATH  Google Scholar 

  10. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics (Springer-Verlag, Berlin, 1976).

    Book  Google Scholar 

  11. J.-F. Rodrigues, Obstacle Problems in Mathematical Physics (North-Holland, Amsterdam, 1987).

    MATH  Google Scholar 

  12. L. A. Caffarelli, A. Friedman, and A. Torelli, “The two-obstacle problem for the biharmonic operator,” Pac. J. Math. 103 (2), 325–335 (1982).

    Article  MathSciNet  Google Scholar 

  13. B. Schild, “On the coincidence set in biharmonic variational inequalities with thin obstacles,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (4), 559–616 (1086).

  14. G. Aleksanyan, “Regularity of the free boundary in the biharmonic obstacle problem,” Calc. Var. Partial Differ. Equations 58, article no. 206 (2019). https://doi.org/10.1007/s00526-019-1638-5

    Article  MathSciNet  MATH  Google Scholar 

  15. S. C. Brenner, L.-Y. Sung, H. Zhang, and Y. Zhang, “A quadratic \({{C}^{0}}\) interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates,” SIAM J. Numer. Anal. 50 (6), 3329–3350 (2012).

    Article  MathSciNet  Google Scholar 

  16. R. Glowinski, L. D. Marini, and M. Vidrascu, “Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality,” IMA J. Numer. Anal. 4 (2), 127–167 (1984).

    Article  MathSciNet  Google Scholar 

  17. R. Glowinski, Numerical Methods for Nonlinear Variational Problems (Springer-Verlag, New York, 1984).

    Book  Google Scholar 

  18. J. Haslinger, I. Hlaváček, and J. Nečas, “A unified approach to a posteriori error estimation using element residual methods,” Handb. Numer. Anal. 4, 313–485 (1996).

    Google Scholar 

  19. K. Ito and K. Kunisch, “An augmented Lagrangian technique for variational inequalities,” Appl. Math. Optim. 21 (3), 223–241 (1990).

    Article  MathSciNet  Google Scholar 

  20. D. R. Adams, V. Hrynkiv, and S. Lenhart, “Optimal control of a biharmonic obstacle problem,” Around the Research of Vladimir Maz’ya III (Springer, New York, 2010), pp. 1–24.

    MATH  Google Scholar 

  21. K. Ito and K. Kunisch, “Optimal control of elliptic variational inequalities,” Appl. Math. Optim. 41 (3), 343–364 (2000).

    Article  MathSciNet  Google Scholar 

  22. P. Neittaanmäki and S. I. Repin, “A posteriori error estimates for boundary-value problems related to the biharmonic operator,” East-West J. Numer. Math. 9 (2), 157–178 (2001).

    Article  MathSciNet  Google Scholar 

  23. S. I. Repin, “Estimates of deviations from exact solutions of elliptic variational inequalities,” J. Math. Sci. 115 (6), 2811–2819 (2003).

    Article  MathSciNet  Google Scholar 

  24. S. Repin, A Posteriori Estimates for Partial Differential Equations (Walter de Gruyter, Berlin, 2008).

    Book  Google Scholar 

  25. S. Repin and J. Valdman, “Error identities for variational problems with obstacles,” Z. Angew. Math. Mech. 98 (4), 635–658 (2018).

    Article  MathSciNet  Google Scholar 

  26. D. E. Apushkinskaya and S. I. Repin, “Thin obstacle problem: estimates of the distance to the exact solution,” Interfaces Free Boundaries 20 (4), 511–531 (2018).

    Article  MathSciNet  Google Scholar 

  27. S. I. Repin, “Two-sided estimates of deviation from exact solutions of uniformly elliptic equations,” Proceedings of the St. Petersburg Mathematical Society, Vol. 9. Am. Math. Soc. Transl. Ser. 2 209, 143–171 (2003).

  28. P. Neittaanmäki and S. Repin, Reliable Methods for Computer Simulation (Elsevier Science, Amsterdam, 2004).

    MATH  Google Scholar 

  29. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976).

    MATH  Google Scholar 

Download references

Funding

The first author was supported by the German Research Foundation (grant no. AP 252/3-1) and by the “RUDN University program 5-100”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. E. Apushkinskaya or S. I. Repin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apushkinskaya, D.E., Repin, S.I. Biharmonic Obstacle Problem: Guaranteed and Computable Error Bounds for Approximate Solutions. Comput. Math. and Math. Phys. 60, 1823–1838 (2020). https://doi.org/10.1134/S0965542520110032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520110032

Keywords:

Navigation