Skip to main content
Log in

Recovery of Boundary Functions on External and Internal Open Boundaries in an Open Sea Hydrodynamic Problem

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The inverse problem of recovering boundary functions on external and internal open boundaries for an open sea hydrodynamic model based on the linearized shallow water equations is considered. The external open boundary is meant as the boundary separating the considered water area from the world ocean. The internal open boundary is introduced to use the domain decomposition method. The inverse problem is studied theoretically, including the proof of its unique and dense solvability. An iterative algorithm for its solution is formulated, which combines variational data assimilation with the domain decomposition method. The theoretical study is illustrated by numerical results obtained for a test problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. A. Spall and W. R. Holland, “A nested primitive equation model for oceanic applications,” J. Phys. Oceanogr. 21 (2), 205–220 (1991).

    Article  Google Scholar 

  2. A. I. Kubryakov, “Application of nested grids in a system of monitoring hydrophysical fields in Black Sea offshore regions,” Ecological Safety of Offshore and Shelf Regions and Complex Use of Shelf Resources (NPTs “EKOSI-Gidrofizika,” Sevastopol, 2004), Vol. 11, pp. 31–50.

  3. P. Marchesiello, J. C. McWilliams, and A. Shchepetkin, “Open boundary conditions for long-term integration of regional oceanic models,” Ocean Model. 3, 1–20 (2001).

    Article  Google Scholar 

  4. I. A. Chernov and A. V. Tolstikov, “Numerical simulation of White Sea large-scale dynamics,” Trudy Karel. Nauchn. Tsentra Ross. Akad. Nauk 4, 137–142 (2014).

    Google Scholar 

  5. S. A. Myslenkov, “Satellite altimetry data application for the calculation of the water transport in North Atlantic,” Proc. Hydrometcenter Russ. 345, 135–143 (2011).

    Google Scholar 

  6. C. A. Edwards, A. M. Moore, I. Hoteit, and B. D. Cornuelle, “Regional ocean data assimilation,” Annu. Rev. Mar. Sci. 7, 6.1–6.22 (2015).

  7. E. Audusse, P. Dreyfuss, and B. Merlet, “Optimized Schwarz waveform relaxation for primitive equations of the ocean,” SIAM J. Sci. Comput. 32 (5), 2908–2936 (2010).

    Article  MathSciNet  Google Scholar 

  8. H. S. Tang, K. Qu, and X. G. Wu, “An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows,” J. Comput. Phys. 273, 548–571 (2014).

    Article  MathSciNet  Google Scholar 

  9. M. P. Daou, E. Blayo, A. Rousseau, O. Bertrand, M. T. Pigeonnat, C. Coulet, and N. Goutal, “Coupling 3D Navier–Stokes and 1D shallow water models,” Simhydro 2014: Hydraulic Modeling and Uncertainty, June 12–13, 2014, Sophia Antipolis, France, 2014. https://hal.inria.fr/hal-00995171/document. Accessed June 1, 2019.

  10. E. Blayo, A. Rousseau, and M. Tayachi, “Boundary conditions and Schwarz waveform relaxation method for linear viscous shallow water equations in hydrodynamics,” SIAM J. Comput. Math. 3, 117–137 (2017).

    Article  MathSciNet  Google Scholar 

  11. L. D’Amore, R. Arcucci, L. Carracciuolo, and A. Murli, “DD-OceanVar: A domain decomposition fully parallel data assimilation software for the Mediterranean forecasting system,” Procedia Comput. Sci. 18, 1235–1244 (2013).

    Article  Google Scholar 

  12. T. O. Sheloput and N. R. Lezina, “Joint implementation of data assimilation on 'liquid' boundaries and domain decomposition in the Baltic Sea,” Vestn. Tver. Gos. Univ., Ser. Geogr. Geoekol., No. 3, 168–179 (2018).

  13. A. Teruzzi, P. Di Cerbo, G. Cossarini, E. Pascolo, and S. Salon, “Parallel implementation of a data assimilation scheme for operational oceanography: The case of the MedBFM model system,” Comput. Geosci. 124, 103–114 (2019).

    Article  Google Scholar 

  14. Y. Trémolet and F. X. Le Dimet, “Parallel algorithms for variational data assimilation and coupling models,” Parallel Comput. 22 (5), 657–674 (1996).

    Article  MathSciNet  Google Scholar 

  15. V. I. Agoshkov, “Statement and study of some inverse problems in modelling of hydrophysical fields for water areas with 'liquid' boundaries,” Russ. J. Numer. Anal. Math. Model. 32 (2), 73–90 (2017).

    MathSciNet  MATH  Google Scholar 

  16. N. A. Diansky, A. V. Bagno, and V. B. Zalesny, “Sigma model of global ocean circulation and its sensitivity to variations in wind stress,” Izv. Atm. Oceanic Phys. 38 (4), 477–494 (2002).

    Google Scholar 

  17. V. B. Zalesny, A. V. Gusev, V. O. Ivchenko, R. Tamsalu, and R. Aps, “Numerical model of the Baltic Sea circulation,” Russ. J. Numer. Anal. Math. Model. 28 (1), 85–100 (2013).

    Article  MathSciNet  Google Scholar 

  18. V. I. Agoshkov and T. O. Sheloput, “The study and numerical solution of the problem of heat and salinity transfer assuming 'liquid' boundaries,” Russ. J. Numer. Anal. Math. Model. 31 (2), 71–80 (2016).

    Article  MathSciNet  Google Scholar 

  19. V. I. Agoshkov and T. O. Sheloput, “The study and numerical solution of some inverse problems in simulation of hydrophysical fields in water areas with 'liquid' boundaries,” Russ. J. Numer. Anal. Math. Model. 32 (3), 147–164 (2017).

    MathSciNet  MATH  Google Scholar 

  20. T. O. Sheloput, “Numerical solution of the problem of variational assimilation of sea level elevation on a liquid (open) boundary in a Baltic Sea hydrothermodynamics model,” Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 15 (7), 15–23 (2018).

    Article  Google Scholar 

  21. V. I. Agoshkov, Domain Decomposition Methods in Ocean Hydrothermodynamics (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 2017), pp. 99–125 [in Russian].

    Google Scholar 

  22. V. Agoshkov, P. Gervasio, and A. Quarteroni, “Optimal control in heterogeneous domain decomposition methods for advection–diffusion equations,” Mediterr. J. Math. 3 (2), 147–176 (2006).

    Article  MathSciNet  Google Scholar 

  23. V. I. Agoshkov, N. R. Lezina, and T. O. Sheloput, “Domain decomposition method for the variational assimilation of the sea level in a model of open water areas hydrodynamics,” J. Mar. Sci. Eng. 7 (6), 195 (2019).

    Article  Google Scholar 

  24. J. K. Willis and L. L. Fu, “Combining altimeter and subsurface float data to estimate the time-averaged circulation in the upper ocean,” J. Geophys. Res. Oceans C 113 (12), 1–15 (2008).

    Article  Google Scholar 

  25. A. N. Demidov, S. A. Dobrolyubov, S. A. Myslenkov, A. V. Sokov, and R. Yu. Tarakanov, “Water mass transport through 600 N in the North Atlantic over 1997–2007 as inferred from Russian oceanographic section data,” Trudy Gidromettsentra Ross. 343, 90–101 (2009).

    Google Scholar 

  26. V. I. Agoshkov, Methods for Solving Inverse Problems and Variational Data Assimilation Problems in Large-Scale Ocean Dynamics (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 2016) [in Russian].

    Google Scholar 

  27. V. I. Agoshkov, “Inverse problems of the mathematical theory of tides: Boundary-function problem,” Russ. J. Numer. Anal. Math. Model. 20 (1), 1–18 (2005).

    Article  MathSciNet  Google Scholar 

  28. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979).

    MATH  Google Scholar 

  29. V. I. Agoshkov, Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 2016) [in Russian].

    Google Scholar 

  30. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications (Dunod, Paris, 1968).

    MATH  Google Scholar 

  31. S. G. Krein, Linear Differential Equations in Banach Spaces (Nauka, Moscow, 1971; Birkhäuser, Boston, 1982).

  32. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Halsted, New York, 1977; Nauka, Moscow, 1986).

  33. A. G. Yagola, “On the choice of regularization parameter when solving ill-posed problems in reflexive spaces,” USSR Comput. Math. Math. Phys. 20 (3), 40–52 (1983).

    Article  Google Scholar 

  34. V. K. Ivanov, V. V. Vasin, and V. V. Tanana, Theory of Linear Ill-Posed Problems and Its Applications (Nauka, Moscow, 1978; VSP, Utrecht, 2002).

  35. V. B. Zalesny, N. A. Diansky, V. V. Fomin, S. N. Moshonkin, and S. G. Demyshev, “Numerical model of the circulation of the Black Sea and the Sea of Azov,” Russ. J. Numer. Anal. Math. Model. 27 (1), 95–112 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.P. Shutyaev for discussion of this work and helpful comments.

Funding

This work was supported in part by the Russian Science Foundation (project no. 19-71-20035, the general formulation of the inverse problem) and by the Russian Foundation for Basic Research (project no. 19-01-00595, the study of the formulated problems).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. R. Lezina or T. O. Sheloput.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agoshkov, V.I., Lezina, N.R. & Sheloput, T.O. Recovery of Boundary Functions on External and Internal Open Boundaries in an Open Sea Hydrodynamic Problem. Comput. Math. and Math. Phys. 60, 1855–1871 (2020). https://doi.org/10.1134/S0965542520110019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520110019

Keywords:

Navigation