Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Lower Coefficient


The Lomov regularization method is generalized to a singularly perturbed Cauchy–Riemann equation with a singularity in the lower coefficient.

This is a preview of subscription content, log in to check access.


  1. 1

    A. B. Vasil’eva and V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  2. 2

    S. A. Lomov, Introduction to the General Theory of Singular Perturbations (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  3. 3

    S. A. Lomov and I. S. Lomov, Fundamentals of the Mathematical Theory of Boundary Layers (Mosk. Gos. Univ., Moscow, 2011) [in Russian].

    Google Scholar 

  4. 4

    A. B. Vasil’eva, V. F. Butuzov, and N. N. Nefedov, “Contrast structures in singularly perturbed problems,” Fundament. Prikl. Mat. 4 (3), 799–851 (1998).

    MathSciNet  MATH  Google Scholar 

  5. 5

    N. N. Nefedov and A. G. Nikitin, “The Cauchy problem for a singularly perturbed integro-differential Fredholm equation,” Comput. Math. Math. Phys. 47 (4), 629–637 (2007).

    MathSciNet  Article  Google Scholar 

  6. 6

    V. F. Safonov and A. A. Bobodzhanov, Singularly Perturbed Problems and Regularization Method: Handbook (Mosk. Energ. Inst., Moscow, 2012) [in Russian].

    Google Scholar 

  7. 7

    A. A. Bobodzhanov and V. F. Safonov, “Generalization of the regularization method to singularly perturbed integro-differential partial differential equations,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., No. 3, 9–22 (2018).

  8. 8

    I. N. Vekua, Generalized Analytic Functions (Addison-Wesley, Reading, Mass., 1962; Fizmatlit, Moscow, 1988).

  9. 9

    A. B. Rasulov and A. P. Soldatov, “Boundary value problem for a generalized Cauchy–Riemann equation with singular coefficients,” Differ. Equations 52 (5), 616–629 (2016).

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to A. B. Rasulov or Yu. S. Fedorov.

Additional information

Translated by N. Berestova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rasulov, A.B., Fedorov, Y.S. Singularly Perturbed Cauchy–Riemann Equation with a Singularity in the Lower Coefficient. Comput. Math. and Math. Phys. 60, 1701–1707 (2020).

Download citation


  • Cauchy–Riemann system
  • Dirichlet problem
  • Lomov regularization method
  • Vekua operator