Skip to main content

Stationary States in a Model of Position Selection by Individuals


A model of position selection by individuals in the propaganda battle of two parties is considered. The position selection is based on a neurological decision-making model the input of which is the information stimuli arriving to the individual from the opposing parties and which produces as its output the support of one of these parties. In this version of the model, assortativity and the incomplete coverage of the population by mass media are also taken into account. The number and stability of equilibriums are investigated and a meaningful interpretation is proposed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. M. H. DeGroot, “Reaching a consensus,” J. Am. Statistic. Associat. 69 (345), 181–121 (1974).

    Article  Google Scholar 

  2. N. F. Friedkin, A. V. Proskurnikov, R. Tempo, and S. E. Parsegov, “Network science on belief system dynamics under logic constraints,” Science 354 (6310), 321–326 (2016).

    MathSciNet  Article  Google Scholar 

  3. I. V. Kozitsin and A. A. Belolipetskii, “Opinion convergence in the Krasnoshchekov model,” J. Math. Sociology 43 (2), 1–18, (2018).

    MathSciNet  Google Scholar 

  4. A. G. Chkhartishvili, D. A. Gubanov, and D. A. Novikov, Social Networks: Models of Information Influence, Control and Confrontation (Springer, 2019).

    Book  Google Scholar 

  5. A. G. Chkhartishvili and D. A. Gubanov, “Influence levels of users and meta-users of a social network,” Autom. Remote Control. 79, 545–553 (2018).

    MathSciNet  Article  Google Scholar 

  6. P. Barberá, J. T. Jost, J. Nagler, J. A. Tucker, and R. Bonneau, “Tweeting from left to right: Is online political communication more than an echo chamber?” Psychologic. Sci. 26, 1531–1542 (2015).

    Article  Google Scholar 

  7. R. Karlsen, K. Steen-Johnsen, D. Wollebæk, and B. Enjolras, “Echo chamber and trench warfare dynamics in online debates. Eur. J. Commun., 32 (3), 257–273 (2017).

    Article  Google Scholar 

  8. A. Chkhartishvili and I. Kozitsin, “Binary separation index for echo chamber effect measuring,” Proc. of the 11th Int. Conf. “Management of Large-Scale System Development” (MLSD), Moscow, 2018, pp. 1–4.

  9. M. P. Fiorina and S. J. Abrams, “Political polarization in the American public,” Annu. Rev. Polit. Sci. 11, 563-588 (2008).

    Article  Google Scholar 

  10. N. Rashevsky, Mathematical Biophysics: Physico-Mathematical Foundations of Biology (Univ. of Chicago, Chicago Press, 1938).

    MATH  Google Scholar 

  11. G. K. Osei and J. W. Thompson, “The supersession of one rumour by another,” J. Appl. Probability 14 (1), 127–134 (1977).

    MathSciNet  Article  Google Scholar 

  12. R. Escalante and M. Odehnal, “A deterministic mathematical model for the spread of two rumors,” ArXiv preprint arXiv:1709.01726. 2017.

  13. D. J. Daley and D. G. Kendall, “Stochastic rumors,” J. Inst. Math. Appl. 1, 42–55 (1964).

    Article  Google Scholar 

  14. D. P. Maki and M. Thompson, Mathematical Models and Applications (Prentice-Hall, Englewood Cliffs, 1973).

    Google Scholar 

  15. A. P. Mikhailov and N. A. Marevtseva, “Models of information warfare,” Mat. Model. 23 (10), 19–32 (2011).

    MathSciNet  MATH  Google Scholar 

  16. A. P. Petrov and O. G. Proncheva, “Modeling position selection by individuals during information warfare with a two-component agenda,” Math. Models Comput. Simul. 12, 154–163 (2020).

    MathSciNet  Article  Google Scholar 

  17. D. Yanagizawa-Drott, “Propaganda and conflict: Evidence from the Rwandan genocide,” Q. J. Econ. 129, 1947–1994 (2014).

    Article  Google Scholar 

  18. L. Akhtyamova, A. Ignatov, and J. Cardiff, “A large-scale CNN ensemble for medication safety analysis,” Int. Conf. Applications of Natural Language to Information Systems, (Springer, 2017), pp. 247–253.

  19. A. Boldyreva, O. Sobolevskiy, M. Alexandrov, and V. Danilova, “Creating collections of descriptors of events and processes based on Internet queries,” Proc. of 14th Mexican Int. Conf. on Artificial Intelligence (MICAI-2016) (Springer 2016), LNAI 10061, 303–314.

  20. A. Boldyreva, M. Alexandrov, O. Koshulko, and O. Sobolevskiy, “Queries to Internet as a tool for analysis of the regional police work and forecast of the crimes in regions,” Proc. of 14th Mexican Int. Conf. on Artificial Intelligence (MICAI-2016) (Springer 2016), LNAI 10061, 290–302.

  21. A. Mikhailov, A. Petrov, G. Pronchev, and O. Proncheva, “Modeling a decrease in public attention to a past one-time political event,” Dokl. Math. 97, 247–249 (2018).

    MathSciNet  Article  Google Scholar 

  22. A. Petrov and O. Proncheva, “Modeling propaganda battle: Decision-making, homophily, and echo chambers,” in Communications in Computer and Information Science, Vol. 930 Artificial Intelligence and Natural Language (Springer, 2018), pp. 197–209.

  23. A. Petrov and O. Proncheva, “Propaganda battle with two-component agenda,” Proc. of the CEUR Workshop, 2019, Vol. 2478, pp. 28–38.

  24. M. E. McCombs and D. L. Shaw, “The agenda-setting function of mass media,” Public Opinion Quart. 36 (2), 176–187 (1972).

    Article  Google Scholar 

  25. M. McCombs and N. J. Stroud, “Psychology of agenda-setting effects: Mapping the paths of information processing,” Rev. Commun. Res. 2 (1), 68–93 (2014).

    Google Scholar 

  26. R. K. Garrett, “Echo chambers online?: Politically motivated selective exposure among Internet news users,” J. Comput.-Mediated Commun. 14 (2), 265–285 (2009).

    Article  Google Scholar 

  27. N. J. Stroud, “Polarization and partisan selective exposure,” J. Commun. 60, 556–576 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. P. Petrov or O. G. Proncheva.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.P., Proncheva, O.G. Stationary States in a Model of Position Selection by Individuals. Comput. Math. and Math. Phys. 60, 1737–1746 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • ordinary differential equations
  • stability
  • neurological decision-making model
  • propaganda battle
  • echo chamber