Best Recovery of the Solution of the Dirichlet Problem in a Half-Space from Inaccurate Data

Abstract

A family of linear optimal methods for reconstructing the solution of the Dirichlet problem on a hyperplane from information about its approximate measurements on a finite number of other hyperplanes is constructed. In this case, optimal methods do not use all the available information, but only information about the measurements of the solution on at most two planes.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1

    S. A. Smolyak, Candidate’s Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 1965).

  2. 2

    C. A. Micchelli and T. J. Rivlin, “A survey of optimal recovery,” in Optimal Estimation in Approximation Theory, Ed. by C. A. Micchelli and T. J. Rivlin (Plenum, New York, 1977), pp. 1–54.

    Google Scholar 

  3. 3

    A. A. Melkman and C. A. Micchelli, “Optimal estimation of linear operators in Hilbert spaces from inaccurate data,” SIAM J. Numer. Anal. 16, 87–105 (1979).

    MathSciNet  Article  Google Scholar 

  4. 4

    C. A. Micchelli and T. J. Rivlin, “Lectures on optimal recovery,” Lect. Notes Math. 1129, 21–93 (1985).

    MathSciNet  Article  Google Scholar 

  5. 5

    G. G. Magaril-Il’yaev and V. M. Tikhomirov, “Kolmogorov-type inequalities for derivatives,” Sb. Math. 188 (12), 1799–1832 (1997).

    MathSciNet  Article  Google Scholar 

  6. 6

    G. G. Magaril-Il’yaev and K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from inaccurate information about the spectrum and inequalities for derivatives,” Funct. Anal. Appl. 37, 203–214 (2003).

    MathSciNet  Article  Google Scholar 

  7. 7

    G. G. Magaril-Il’yaev, K. Yu. Osipenko, and V. M. Tikhomirov, “On optimal recovery of heat equation solutions,” in Approximation Theory: A Volume Dedicated to B. Bojanov, Ed. by D. K. Dimitrov, G. Nikolov, and R. Uluchev (Marin Drinov Academic, Sofia, 2004), pp. 163–175.

    Google Scholar 

  8. 8

    G. G. Magaril-Il’yaev and K. Yu. Osipenko, “On optimal harmonic synthesis from inaccurate spectral data,” Funct. Anal. Appl. 44 (3), 223–225 (2010).

    MathSciNet  Article  Google Scholar 

  9. 9

    G. G. Magaril-Il’yaev and E. O. Sivkova, “Best recovery of the Laplace operator of a function from incomplete spectral data,” Math. Sb. 203 (4), 569–580 (2012).

    Article  Google Scholar 

  10. 10

    E. A. Balova, “Optimal reconstruction of the solution of the Dirichlet problem from inaccurate input data,” Math. Notes 82 (3), 285–294 (2007).

    MathSciNet  Article  Google Scholar 

  11. 11

    G. G. Magaril-Il’yaev and K. Yu. Osipenko, “Optimal recovery of the solution of the heat equation from inaccurate data,” Sb. Math. 200 (5), 665–682 (2009).

    MathSciNet  Article  Google Scholar 

  12. 12

    E. V. Abramova, “Recovery of the solution to the Dirichlet problem from inaccurate boundary data,” Vladikavkaz. Mat. Zh. 17 (1), 3–13 (2015).

    Google Scholar 

  13. 13

    G. G. Magaril-Il’yaev and E. O. Sivkova, “Optimal recovery of the semi-group operators from inaccurate data,” Eurasian Math. J. 10, 4 (2019).

    MATH  Google Scholar 

  14. 14

    E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, N.J., 1971).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 17-01-00649-a.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to E. V. Abramova or G. G. Magaril-Il’yaev or E. O. Sivkova.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abramova, E.V., Magaril-Il’yaev, G.G. & Sivkova, E.O. Best Recovery of the Solution of the Dirichlet Problem in a Half-Space from Inaccurate Data. Comput. Math. and Math. Phys. 60, 1656–1665 (2020). https://doi.org/10.1134/S0965542520100036

Download citation

Keywords:

  • Dirichlet problem
  • optimal recovery
  • extremal problem