Skip to main content
Log in

Phaseless Inverse Problems for Schrödinger, Helmholtz, and Maxwell Equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A survey of recent research concerning phaseless inverse problems for several differential equations is given. Mainly, the surveyed studies were performed over the last five years, although their importance of this subject for quantum scattering theory was noted more than 40 years ago. Problem formulations and results are presented, and the basic ideas underlying the research are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer-Verlag, New York, 1977).

    MATH  Google Scholar 

  2. R. G. Newton, Inverse Schrodinger Scattering in Three Dimensions (Springer, New York, 1989).

    MATH  Google Scholar 

  3. T. Aktosun and P. E. Sacks, “Inverse problem on the line without phase information,” Inverse Probl. 14, 211–224 (1988).

    MathSciNet  MATH  Google Scholar 

  4. N. F. Berk and C. F. Majkrzak, “Statistical analysis of phase-inversion neutron specular reflectivity,” Langmuir 25, 4132–4144 (2009).

    Google Scholar 

  5. Z. T. Nazarchuk, R. O. Hryniv, and A. T. Synyavsky, “Reconstruction of the impedance Schrödinger equation from the modulus of the reflection coefficients,” Wave Motion 49, 719–736 (2012).

    MathSciNet  MATH  Google Scholar 

  6. O. Ivanyshyn and R. Kress, “Inverse scattering for surface impedance from phase-less far field data,” J. Comput. Phys. 230, 3443–3452 (2011).

    MathSciNet  MATH  Google Scholar 

  7. M. V. Klibanov and P. E. Sacks, “Phaseless inverse scattering and the phase problem in optics,” J. Math. Phys. 33, 3813–3821 (1992).

    MathSciNet  MATH  Google Scholar 

  8. M. V. Klibanov, “Phaseless inverse scattering problems in three dimensions,” SIAM J. Appl. Math. 74, 392–410 (2014).

    MathSciNet  MATH  Google Scholar 

  9. M. V. Klibanov, “On the first solution of a long standing problem: Uniqueness of the phaseless quantum inverse scattering problem in 3-d,” Appl. Math. Lett. 37, 82–85 (2014).

    MathSciNet  MATH  Google Scholar 

  10. M. V. Klibanov, “Uniqueness of two phaseless non-overdetermined inverse acoustics problems in 3-d,” Appl. Anal. 93, 1135–1149 (2014).

    MathSciNet  MATH  Google Scholar 

  11. M. V. Klibanov and V. G. Romanov, “The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrödinger equation,” J. Inverse Ill-Posed Probl. 23 (4), 415–428 (2015).

    MathSciNet  MATH  Google Scholar 

  12. M. V. Klibanov and V. G. Romanov, “Explicit solution of 3-D phaseless inverse scattering problems for the Schrödinger equation: The plane wave case,” J. Eurasian, Appl. 3 (1), 48–63 (2015).

    Google Scholar 

  13. R. G. Novikov, “Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions,” J. Geom. Anal. (2015). https://doi.org/10.1007/5.12220-014-9553-7

  14. R. G. Novikov, “Formulas for phase recovering from phaseless scattering data at fixed frequency,” Bull. Sci. Math. 139, 923–936 (2015).

    MathSciNet  MATH  Google Scholar 

  15. R. G. Novikov, “Phaseless inverse scattering in the one-dimensional case,” Eurasian J. Math. Comput. Appl. 3, 64–70 (2015).

    Google Scholar 

  16. J. Radon, “Über die Bestimmung von Funktionen durch ihre integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Sachsische Akad. Wiss. Leipzig 29, 262–277 (1917).

    MATH  Google Scholar 

  17. S. Helgason, The Radon Transform (Birkhäuser, Boston, 1980).

    MATH  Google Scholar 

  18. F. Natterer, The Mathematics of Computerized Tomography (SIAM, Philadelphia, PA, 2001).

    MATH  Google Scholar 

  19. V. G. Romanov, Inverse Problems for Hyperbolic Equations (Nauka, Novosibirsk, 1972) [in Russian].

    Google Scholar 

  20. M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Am. Math. Soc., Providence, R.I., 1986).

  21. V. G. Romanov, Inverse Problems of Mathematical Physics (Nauka, Moscow, 1984; VNU Science, Utrecht, 1987).

  22. B. R. Vainberg, “Principles of radiation, limit absorption, and limit amplitude in the general theory of partial differential equations,” Russ. Math. Surv. 21 (3), 115–193 (1966).

    Google Scholar 

  23. B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics (Gordon and Breach Science, New York, 1989).

    MATH  Google Scholar 

  24. R. G. Novikov, “Absence of exponentially localized solutions for the Novikov–Veselov equation at positive energy,” Phys. Lett. A 375, 1233–1235 (2011).

    MathSciNet  MATH  Google Scholar 

  25. H. Liu and Y. Wang, “Recovering an electromagnetic obstacle by a few phaseless backscattering measurements,” Inverse Probl. 32, 03501 (2017).

    MathSciNet  MATH  Google Scholar 

  26. M. V. Klibanov, L. H. Nguyen, and K. Pan, “Nanostructures imaging via numerical solution of a 3-D inverse scattering problem without the phase information,” Appl. Numer. Math. 110, 190–203 (2016).

    MathSciNet  MATH  Google Scholar 

  27. H. Ammari, Y. T. Chow, and J. Zou, “Phased, phaseless domain reconstruction in inverse scattering problem via scattering coefficients,” SIAM J. Appl. Math. 76, 1000–1030 (2016).

    MathSciNet  MATH  Google Scholar 

  28. G. Bao, P. Li, and J. Lv, “Numerical solution of an inverse diffraction grating problem from phaseless data,” J. Opt. Soc. Am. A 30, 293–299 (2013).

    Google Scholar 

  29. L. Beilina and M. V. Klibanov Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New York, 2012).

    MATH  Google Scholar 

  30. M. V. Klibanov and V. G. Romanov, “Reconstruction procedures for two inverse scattering problem without the phase information,” SIAM J. Appl. Math. 76 (1), 178–196 (2016).

    MathSciNet  MATH  Google Scholar 

  31. M. V. Klibanov and V. G. Romanov, “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation,” Inverse Probl. 32 (2), 015005 (2016).

    MathSciNet  MATH  Google Scholar 

  32. V. G. Romanov, “Some geometric aspects in inverse problems,” Eurasian J. Math. Comput. Appl. 3 (4), 68–84 (2015).

    Google Scholar 

  33. G. Herglotz, “Über die Elastizität der Erde bei Borücksichtigung ithrer variablen Dichte,” Z. Math. Phys. 52 (3), 275–299 (1905).

    MATH  Google Scholar 

  34. V. G. Romanov, “Reconstruction of a function via integrals over a family of curves,” Sib. Mat. Zh. 8 (5), 1206–1208 (1967).

    Google Scholar 

  35. A. S. Alekseev, M. M. Lavrent’ev, R. G. Mukhometov, et al., “Numerical method for solving a three-dimensional inverse kinematic problem in seismology,” in Mathematical Problems in Geophysics (Vychisl. Tsentr Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1969), Vol. 1, pp. 179–201 [in Russian].

    Google Scholar 

  36. A. S. Alekseev, A. V. Belonosova, et al., “Seismic studies of low-velocity layers and horizontal inhomogeneities within the crust and upper mantle on the territory of the USSR,” Tectonophysics 20, 47–56 (1973).

    Google Scholar 

  37. A. S. Alekseev, M. M. Lavrent’ev, V. G. Romanov, et al., “Theoretical and numerical issues of seismic tomography,” in Mathematical Modeling in Geophysics (Nauka, Novosibirsk, 1988), pp. 35–50 [in Russian].

    Google Scholar 

  38. R. G. Mukhometov, “Problem of reconstructing the two-dimensional Riemannian metric and integral geometry,” Dokl. Akad. Nauk SSSR 232 (1), 32–35 (1977).

    MathSciNet  Google Scholar 

  39. R. G. Mukhometov and V. G. Romanov, “Problem of finding an isotropic Riemannian metric in n-dimensional space,” Dokl. Akad. Nauk SSSR 243 (1), 41–44 (1978).

    MathSciNet  Google Scholar 

  40. I. N. Bernshtein and M. L. Gerver, “Problem of integral geometry for a family of geodesics and an inverse kinematic problem of seismology,” Dokl. Akad. Nauk SSSR 243 (2), 302–305 (1978).

    MathSciNet  Google Scholar 

  41. G. Ya. Beil’kin, “Stability and uniqueness of the solution of the inverse kinematic problem of seismology in higher dimensions,” J. Sov. Math. 21 (3), 251–254 (1983).

    Google Scholar 

  42. V. G. Romanov, Investigation Methods for Inverse Problems (VSP, Utrecht, 2002).

    MATH  Google Scholar 

  43. V. G. Romanov and M. Yamamoto, “Recovering two coefficients in an elliptic equation via phaseless information,” Inverse Probl. Imaging 13 (1), 81–91 (2019).

    MathSciNet  MATH  Google Scholar 

  44. M. V. Klibanov and V. G. Romanov, “Uniqueness of a 3-D coefficient inverse scattering problem without the phase information,” Inverse Probl. 33, 095007 (2017).

    MathSciNet  MATH  Google Scholar 

  45. M. V. Klibanov, “A phaseless inverse scattering problem for the 3-D Helmholtz equation,” Inverse Probl. Imaging 11, 263–276 (2017).

    MathSciNet  MATH  Google Scholar 

  46. V. G. Romanov and M. Yamamoto, “Phaseless inverse problems with interference waves,” J. Inverse Ill-Posed Probl. 26 (5), 681–688 (2018).

    MathSciNet  MATH  Google Scholar 

  47. V. G. Romanov, “The problem of recovering the permittivity coefficient from the modulus of the scattered electromagnetic field,” Sib. Math. J. 58 (4), 711–717 (2017).

    MathSciNet  MATH  Google Scholar 

  48. V. G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations,” Dokl. Math. 95 (3), 230–234 (2017).

    MathSciNet  MATH  Google Scholar 

  49. V. G. Romanov, “Phaseless inverse problems that use wave interference,” Sib. Math. J. 59 (3), 494–504 (2018).

    MathSciNet  MATH  Google Scholar 

  50. V. G. Romanov, “Determination of permittivity from the modulus of the electric strength of a high-frequency electromagnetic field,” Dokl. Math. 99 (1), 44–47 (2019).

    MATH  Google Scholar 

  51. V. G. Romanov, “Inverse phaseless problem for the electrodynamic equations in an anisotropic medium,” Dokl. Math. 100 (2), 495–500 (2019).

    Google Scholar 

  52. A. N. Tikhonov, “On the transient electric current in a homogeneous conducting half-space,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 10 (3), 213–231 (1946).

    Google Scholar 

  53. A. N. Tikhonov, “On the uniqueness of the solutions of the problems of electro-prospecting,” Dokl. Akad. Nauk SSSR 60 (5), 797–800 (1949).

    Google Scholar 

  54. A. N. Tikhonov, “Determination of the electrical characteristics of the deep strata of the Earth’s crust,” Dokl. Akad. Nauk SSSR 73 (2), 295–297 (1950).

    Google Scholar 

  55. A. N. Tikhonov, “Mathematical basis of the theory of electromagnetic soundings,” USSR Comput. Math. Math. Phys. 5 (3), 207–211 (1965).

    Google Scholar 

  56. L. Cagniard, “Basic theory of the magnito-tellurik method,” Geophysics 187 (3), 605–635 (1953).

    Google Scholar 

  57. V. G. Romanov and S. I. Kabanikhin, Inverse Problems in Geoelectrics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  58. V. G. Romanov, “An inverse problem of electrodynamics,” Dokl. Math. 66 (2), 200–205 (2002).

    MATH  Google Scholar 

  59. V. G. Romanov, “Stability of the determination of the electrical conductivity in electrodynamic equations,” Dokl. Math. 67 (2), 167–171 (2003).

    MATH  Google Scholar 

  60. V. G. Romanov, “A stability estimate for a solution to a three-dimensional inverse problem for the Maxwell equations,” Sib. Math. J. 45 (6), 1098–1112 (2004).

    Google Scholar 

  61. V. G. Romanov, “A stability estimate of the solution to the problem of determining dielectric permittivity and electric conductivity,” Dokl. Math. 71 (1), 154–159 (2005).

    Google Scholar 

  62. V. G. Romanov, “A stability estimate for a solution to an inverse problem of electrodynamics,” Sib. Math. J. 52 (4), 682–695 (2011).

    MathSciNet  MATH  Google Scholar 

  63. V. G. Romanov, “Stability estimate of a solution to the problem of kernel determination in integrodifferential equations of electrodynamics,” Dokl. Math. 84 (1), 518–521 (2011).

    MathSciNet  MATH  Google Scholar 

  64. V. G. Romanov and M. G. Savin, “The problem of determining the conductivity tensor in a depth-inhomogeneous anisotropic medium,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 2, 84–92 (1984).

    Google Scholar 

  65. V. G. Romanov and M. G. Savin, “Determination of the conductivity tensor in an anisotropic three-dimensional inhomogeneous medium: Linear approximation,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 5, 63–72 (1984).

    Google Scholar 

  66. V. G. Romanov, “The structure of the fundamental solution of the Cauchy problem for the system of Maxwell’s equations,” Differ. Uravn. 22 (9), 1577–1587 (1986).

    MathSciNet  Google Scholar 

  67. V. G. Romanov, “Plane wave solutions to the equations of electrodynamics in an anisotropic medium,” Sib. Math. J. 60 (4), 661–672 (2019).

    MATH  Google Scholar 

  68. A. L. Karchevsky and V. A. Dedok, “Reconstruction of permittivity from the modulus of a scattered electric field,” J. Appl. Ind. Math. 12 (3), 470–478 (2018).

    MathSciNet  Google Scholar 

  69. V. A. Dedok, A. L. Karchevsky, and V. G. Romanov, “A numerical method of determining permittivity from the modulus of the electric intensity vector of an electromagnetic field,” J. Appl. Ind. Math. 13 (3), 436–446 (2019).

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Mathematical Center in Akademgorodok and the Ministry of Science and Higher Education of the Russian Federation, contract no. 075-15-2019-1613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Romanov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, V.G. Phaseless Inverse Problems for Schrödinger, Helmholtz, and Maxwell Equations. Comput. Math. and Math. Phys. 60, 1045–1062 (2020). https://doi.org/10.1134/S0965542520060093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520060093

Keywords:

Navigation