Skip to main content
Log in

Inverse Problem of Electrodynamics for Anisotropic Medium: Linear Approximation

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For electrodynamic equations with permittivity specified by a symmetric matrix \(\varepsilon (x) = ({{\varepsilon }_{{ij}}}(x),i,j = 1,2,3)\), the inverse problem of determining this matrix from information on solutions of these equations is considered. It is assumed that the permittivity is a given positive constant \({{\varepsilon }_{0}} > 0\) outside a bounded domain \(\Omega \subset {{\mathbb{R}}^{3}}\), while, inside \(\Omega \), it is an anisotropic quantity such that the differences \({{\varepsilon }_{{ij}}}(x) - {{\varepsilon }_{0}}{{\delta }_{{ij}}} = :{{\tilde {\varepsilon }}_{{ij}}}(x),\)\(i,j = 1,2,3,\) are small. Here, \({{\delta }_{{ij}}}\) is the Kronecker delta. The inverse problem is studied in the linear approximation. The structure of the solution to a linearized direct problem for the electrodynamic equations is investigated, and it is proved that all elements of the matrix \(\tilde {\varepsilon }(x) = {{\tilde {\varepsilon }}_{{ij}}}(x),\;i,j = 1,2,3\), can be uniquely determined by special observation data. Moreover, the problem of recovering the diagonal components \({{\tilde {\varepsilon }}_{{ij}}}(x),\;i = 1,2,3,\) leads to a usual X-ray tomography problem, so these components can be efficiently computed. The recovery of the other components leads to a more complicated algorithmic procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Tikhonov, “On the transient electric current in a homogeneous conducting half-space,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 10 (3), 213–231 (1946).

    Google Scholar 

  2. A. N. Tikhonov, “On the uniqueness of the solutions of the problems of electro-prospecting,” Dokl. Akad. Nauk SSSR 60 (5), 797–800 (1949).

    Google Scholar 

  3. A. N. Tikhonov, “Determination of the electrical characteristics of the deep strata of the Earth’s crust,” Dokl. Akad. Nauk SSSR 73 (2), 295–297 (1950).

    Google Scholar 

  4. A. N. Tikhonov, “Mathematical basis of the theory of electromagnetic soundings,” USSR Comput. Math. Math. Phys. 5 (3), 207–211 (1965).

    Article  Google Scholar 

  5. L. Cagniard, “Basic theory of the magnetotelluric method of geophysical prospecting,” Geophysics 18 (3), 605–635 (1953).

    Article  Google Scholar 

  6. V. G. Romanov, S. I. Kabanikhin, and T. P. Pukhnacheva, “On the theory of inverse problems of electrodynamics,” Dokl. Akad. Nauk SSSR 266 (5), 1070–1073 (1982).

    MathSciNet  MATH  Google Scholar 

  7. V. G. Romanov, “On the uniqueness of the determination of the coefficients of Maxwell’s equations,” Nonclassical Problems for Equations of Mathematical Physics (Novosibirsk, Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1982), pp. 139–142 [in Russian].

    Google Scholar 

  8. V. G. Romanov and S. I. Kabanikhin, Inverse Problems in Geoelectrics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  9. S. He, S. I. Kabanikhin, V. G. Romanov, and S. Ström, “Analysis of the Green’s function approach to one-dimensional inverse problems: I. One parameter reconstruction,” J. Math. Phys. 34 (12), 5724–5746 (1993).

    Article  MathSciNet  Google Scholar 

  10. S. He, S. I. Kabanikhin, V. G. Romanov, and S. Ström, “Mathematical analysis of the Green’s function approach to the inverse problem: II. Simultaneous reconstruction,” J. Math. Phys. 35 (5), 2315–2335 (1994).

    Article  MathSciNet  Google Scholar 

  11. S. I. Kabanikhin and K. S. Abdiev, “Modeling the initial stage of transient electric current and using the results in the problem of determining the conductivity tensor,” Well-posedness of Inverse Problems of Mathematical Physics (Vychisl. Tsentr Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1982), pp. 85–94 [in Russian].

    MATH  Google Scholar 

  12. V. G. Romanov, “The structure of the fundamental solution of the Cauchy problem for the system of Maxwell’s equations,” Differ. Uravn. 22 (9), 1577–1587 (1986).

    MathSciNet  Google Scholar 

  13. V. G. Romanov, “An inverse problem of electrodynamics,” Dokl. Math. 66 (2), 200–205 (2002).

    MATH  Google Scholar 

  14. V. G. Romanov, “Stability of the determination of the electrical conductivity in electrodynamic equations,” Dokl. Math. 67 (2), 167–171 (2003).

    MATH  Google Scholar 

  15. V. G. Romanov, “A stability estimate for a solution to a two-dimensional inverse problem of electrodynamics,” Sib. Math. J. 44 (4), 659–670 (2003).

    Article  Google Scholar 

  16. V. G. Romanov, “A stability estimate for a solution to a three-dimensional inverse problem for the Maxwell equations,” Sib. Math. J. 45 (6), 1098–1112 (2004).

    Article  Google Scholar 

  17. V. G. Romanov, “A stability estimate of the solution to the problem of determining dielectric permittivity and electric conductivity,” Dokl. Math. 71 (1), 154–159 (2005).

    Google Scholar 

  18. V. G. Romanov, “A stability estimate for a solution to an inverse problem of electrodynamics,” Sib. Math. J. 52 (4), 682–695 (2011).

    Article  MathSciNet  Google Scholar 

  19. V. G. Romanov, “Stability estimate of a solution to the problem of kernel determination in integrodifferential equations of electrodynamics,” Dokl. Math. 84 (1), 518–521 (2011).

    Article  MathSciNet  Google Scholar 

  20. V. G. Romanov, “The problem of determining the kernel of electrodynamics equations for dispersion media,” Dokl. Math. 84 (2), 613–616 (2011).

    Article  MathSciNet  Google Scholar 

  21. V. G. Romanov, “The problem of recovering the permittivity coefficient from the modulus of the scattered electromagnetic field,” Sib. Math. J. 58 (4), 711–717 (2017).

    Article  MathSciNet  Google Scholar 

  22. V. G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations,” Dokl. Math. 95 (3), 230–234 (2017).

    Article  MathSciNet  Google Scholar 

  23. V. G. Romanov, “Determination of permittivity from the modulus of the electric strength of a high-frequency electromagnetic field,” Dokl. Math. 99 (1), 44–47 (2019).

    Article  Google Scholar 

  24. V. G. Romanov, “Uniqueness of the determination of dielectric permittivity and magnetic permeability in an anisotropic one-dimensional inhomogeneous medium,” Differ. Uravn. 20 (2), 325–332 (1984).

    Google Scholar 

  25. V. G. Romanov and M. G. Savin, “The problem of determining the conductivity tensor in a depth-inhomogeneous anisotropic medium,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 2, 84–92 (1984).

    Google Scholar 

  26. V. G. Romanov and M. G. Savin, “Determination of the conductivity tensor in an anisotropic three-dimensional inhomogeneous medium: Linear approximation,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 5, 63–72 (1984).

    Google Scholar 

  27. J. Radon, “Über die Bestimmung von Funktionen durch ihre integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Sachsische Akad. Wiss. Leipzig 29, 262–277 (1917).

    MATH  Google Scholar 

  28. S. Helgason, The Radon Transform (Birkhäuser, Boston, 1980).

    Book  Google Scholar 

  29. S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).

    MATH  Google Scholar 

  30. F. Natterer, The Mathematics of Computerized Tomography (SIAM, Philadelphia, PA, 2001).

    Book  Google Scholar 

  31. Ju. E. Anikonov and V. G. Romanov, “On uniqueness of determination of a form of first degree by its integrals along geodesics,” J. Inv. Ill-Posed Probl. 5 (6), 487–490 (1997).

Download references

Funding

This work was supported by the comprehensive basic research program II.1 of the Siberian Branch of the Russian Academy of Sciences, project no. 0314-2018-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Romanov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, V.G. Inverse Problem of Electrodynamics for Anisotropic Medium: Linear Approximation. Comput. Math. and Math. Phys. 60, 1037–1044 (2020). https://doi.org/10.1134/S0965542520060081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520060081

Keywords:

Navigation