Skip to main content
Log in

Direct and Converse Theorems for Iterative Methods of Solving Irregular Operator Equations and Finite Difference Methods for Solving Ill-Posed Cauchy Problems

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Results obtained in recent years concerning necessary and sufficient conditions for the convergence (at a given rate) of approximation methods for solutions of irregular operator equations are overviewed. The exposition is given in the context of classical direct and converse theorems of approximation theory. Due to the proximity of the resulting necessary and sufficient conditions to each other, the solutions on which a certain convergence rate of the methods is reached can be characterized nearly completely. The problems under consideration include irregular linear and nonlinear operator equations and ill-posed Cauchy problems for first- and second-order differential operator equations. Procedures for stable approximation of solutions of general irregular linear equations, classes of finite-difference regularization methods and the quasi-reversibility method for ill-posed Cauchy problems, and the class of iteratively regularized Gauss–Newton type methods for irregular nonlinear operator equations are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Krasnosel’skii, G. M. Vainikko, P. P. Zabreyko, Ya. B. Rutitskii, and V. Ya. Stetsenko, Approximate Solution of Operator Equations (Nauka, Moscow, 1969; Springer-Verlag, Berlin, 1972).

  2. A. B. Bakushinskii and M. Yu. Kokurin, Iterative Methods for Solving Irregular Equations (Lenand, Moscow, 2006) [in Russian].

    Google Scholar 

  3. A. F. Izmailov and A. A. Tret’yakov, 2-Regular Solutions of Nonlinear Problems: Theory and Numerical Methods (Fizmatlit, Moscow, 1999) [in Russian].

    MATH  Google Scholar 

  4. B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems (Walter de Gruyter, Berlin, 2008).

    MATH  Google Scholar 

  5. T. Schuster, B. Kaltenbacher, B. Hofmann, and K. Kazimierski, Regularization Methods in Banach Spaces (Walter de Gruyter, Berlin, 2012).

    MATH  Google Scholar 

  6. S. I. Kabanikhin, Inverse and Ill-Posed Problems (Sibirskoe Nauchnoe, Novosibirsk, 2008) [in Russian].

    MATH  Google Scholar 

  7. A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems (Fizmatlit, Moscow, 1995; CRC, London, 1997).

  8. A. B. Bakushinsky and A. V. Goncharsky, Iterative Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  9. A. B. Bakushinskii and M. Yu. Kokurin, Iterative Methods for Solving Ill-Posed Operator Equations with Smooth Operators (Editorial URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  10. A. Bakushinsky, M. M. Kokurin, and M. Yu. Kokurin, Regularization Algorithms for Ill-Posed Problems (Walter de Gruyter, Berlin, 2018).

    MATH  Google Scholar 

  11. N. I. Akhiezer, Lectures in the Theory of Approximation (Ungar, New York, 1956; Nauka, Moscow, 1965).

  12. S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems (Springer-Verlag, New York, 1975; Nauka, Moscow, 1977).

  13. G. M. Vainikko and A. Yu. Veretennikov, Iterative Procedures in Ill-Posed Problems (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  14. M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral Operators in Spaces of Integrable Functions (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  15. T. Hohage, “Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and inverse scattering problem,” Inverse Probl. 13, 1279–1299 (1997).

    MathSciNet  MATH  Google Scholar 

  16. T. Hohage, “Regularization of exponentially ill-posed problems,” Numer. Funct. Anal. Optim. 21 (3–4), 439–464 (2000).

    MathSciNet  MATH  Google Scholar 

  17. T. Hohage and C. Schormann, “A Newton-type method for a transmission problem in inverse scattering,” Inverse Probl. 14, 1207–1227 (1998).

    MathSciNet  MATH  Google Scholar 

  18. M. Yu. Kokurin and N. A. Yusupova, “On necessary conditions for the qualified convergence of methods for solving linear ill-posed problems,” Russ. Math. 45 (2), 36–44 (2001).

    MathSciNet  MATH  Google Scholar 

  19. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 2000).

    MATH  Google Scholar 

  20. M. Yu. Kokurin, Operator Regularization and Study of Nonlinear Monotone Problems (Mariisk. Gos. Univ., Yoshkar-Ola, 1998).

    Google Scholar 

  21. S. G. Krein, Linear Differential Equations in Banach Spaces (Nauka, Moscow, 1967; Birkhäuser, Boston, 1982).

  22. M. Yu. Kokurin and N. A. Yusupova, “On necessary and sufficient conditions for the slow convergence of methods for solving linear ill-posed problems,” Russ. Math. 46 (2), 78–81 (2002).

    MathSciNet  MATH  Google Scholar 

  23. V. K. Ivanov, I. V. Mel’nikova, and A. I. Filinkov, Differential Operator Equations and Ill-Posed Problems (Fizmatlit, Moscow, 1995) [in Russian].

    MATH  Google Scholar 

  24. A. B. Bakushinskii, M. Yu. Kokurin, and V. V. Klyuchev, “Estimation of the convergence rate and error for finite-difference methods approximating solutions of Cauchy problems in Banach spaces,” Vychisl. Metody Program. 7, 163–171 (2006).

    Google Scholar 

  25. V. V. Vasil’ev, S. I. Piskarev, and N. Yu. Selivanova, “Integrated semigroups and C-semigroups and their applications,” J. Math. Sci. 230, 513–646 (2018).

    MATH  Google Scholar 

  26. R. Lattes and J.-L. Lions, Methode de quasi reversibilite et applications (Dunod, Paris, 1967).

    MATH  Google Scholar 

  27. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (URSS, Moscow, 2004; de Gruyter, Berlin, 2007).

  28. M. Z. Solomyak, “Application of semigroup theory to the study of differential equations in Banach spaces,” Dokl. Akad. Nauk SSSR 122 (5), 766–770 (1958).

    MathSciNet  MATH  Google Scholar 

  29. W. Arendt, Semigroups and Evolution Equations: Functional Calculus, Regularity, and Kernel Estimates: Handbook of Differential Equations: Evolutionary Equations (Elsevier, Amsterdam, 2004), Vol. 1, pp. 1–85.

    MATH  Google Scholar 

  30. N. Yu. Bakaev, Linear Discrete Parabolic Problems (Elsevier, Amsterdam, 2006).

    MATH  Google Scholar 

  31. M. Crouzeix, S. Larsson, S. Piskarev, and V. Thomee, “The stability of rational approximations of analytic semigroups,” BIT Numer. Math. 33 (1), 74–84 (1993).

    MathSciNet  MATH  Google Scholar 

  32. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer-Verlag, New York, 1983).

    MATH  Google Scholar 

  33. M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Am. Math. Soc., Providence, R.I., 1986).

  34. I. Babuska, E. Vitasek, and M. Prager, Numerical Processes in Differential Equations (Interscience, New York, 1966; Mir, Moscow, 1969).

  35. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Binom, Laboratoriya Znanii, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  36. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems (Springer-Verlag, Berlin, 1987).

  37. H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations (Springer-Verlag, Berlin, 1973).

    MATH  Google Scholar 

  38. S. G. Krein and O. I. Prozorovskaya, “On approximate methods of solution of improper problems,” USSR Comput. Math. Math. Phys. 3 (1), 153–167 (1963).

    MATH  Google Scholar 

  39. A. B. Bakushinskii, “Finite-difference methods as applied to ill-posed Cauchy problems for evolution equations in complex V space,” Differ. Uravn. 8 (9), 1661–1668 (1972).

    Google Scholar 

  40. A. B. Bakushinskii, “Finite-difference schemes for ill-posed abstract Cauchy problems,” Differ. Uravn. 7 (10), 1876–1885 (1971).

    Google Scholar 

  41. A. B. Bakushinskii, M. M. Kokurin, and M. Yu. Kokurin, “On a class of finite-difference schemes for solving ill-posed Cauchy problems in Banach spaces,” Comput. Math. Math. Phys. 52 (3), 411–426 (2012).

    MathSciNet  MATH  Google Scholar 

  42. A. B. Bakushinskii, M. Yu. Kokurin, and V. V. Klyuchev, “Convergence rate estimation for finite-difference methods of solving the ill-posed Cauchy problem for second-order linear differential equations in a Banach space,” Vychisl. Metody Program. 11, 25–31 (2010).

    Google Scholar 

  43. A. B. Bakushinsky, M. Yu. Kokurin, and S. K. Paymerov, “On error estimates of difference solution methods for ill-posed Cauchy problems in a Hilbert space,” J. Inverse Ill-Posed Probl. 16 (6), 553–565 (2008).

    MathSciNet  MATH  Google Scholar 

  44. A. B. Bakushinsky, M. Yu. Kokurin, and M. M. Kokurin, “On a class of finite difference methods for ill-posed Cauchy problems with noisy data,” J. Inverse Ill-Posed Probl. 18 (9), 959–977 (2011).

    MathSciNet  MATH  Google Scholar 

  45. M. M. Kokurin, “Optimization of convergence rate estimates for some classes of finite difference schemes for solving ill-posed Cauchy problems,” Vychisl. Metody Program. 14, 58–76 (2013).

    Google Scholar 

  46. M. M. Kokurin, “Necessary and sufficient conditions for the polynomial convergence of the quasi-reversibility and finite-difference methods for an ill-posed Cauchy problem with exact data,” Comput. Math. Math. Phys. 55 (12), 1986–2000 (2015).

    MathSciNet  MATH  Google Scholar 

  47. A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, and Codes (Naukova Dumka, Kiev, 1986) [in Russian].

  48. A. B. Bakushinskii, M. M. Kokurin, and M. Yu. Kokurin, “On a complete discretization scheme for an ill-posed Cauchy problem in a Banach space,” Proc. Steklov Inst. Math. 280, Suppl. 1, 53–65 (2013).

    MathSciNet  MATH  Google Scholar 

  49. M. M. Kokurin, Candidate’s Dissertation in Mathematics and Physics (Yoshkar-Ola, 2018).

  50. M. M. Kokurin, “Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space,” Russ. Math. 63 (10), 40–54 (2019).

    MATH  Google Scholar 

  51. M. M. Kokurin, “Estimates for the convergence rate and errors of finite difference schemes for an ill-posed second-order linear Cauchy problem,” Vychisl. Metody Program. 18, 322–347 (2017).

    Google Scholar 

  52. M. M. Kokurin, “Difference schemes for solving the Cauchy problem for a second-order operator differential equation,” Comput. Math. Math. Phys. 54 (4), 582–597 (2014).

    MathSciNet  Google Scholar 

  53. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (Springer-Verlag, Berlin, 1978).

    MATH  Google Scholar 

  54. F. Riesz and B. Sz.-Nagy, Functional Analysis (Dover, New York, 1991).

    Google Scholar 

  55. A. B. Bakushinskii, “The problem of the convergence of the iteratively regularized Gauss–Newton method,” Comput. Math. Math. Phys. 32 (9), 1353–1359 (1992).

    MathSciNet  Google Scholar 

  56. A. B. Bakushinskii, “Iterative methods without saturation for solving degenerate nonlinear operator equations,” Dokl. Akad. Nauk, 344 (1), 7–8 (1995).

    MathSciNet  Google Scholar 

  57. A. B. Bakushinskii, “Iterative methods for solving irregular nonlinear operator equations,” Fundam. Prikl. Mat. 3 (3), 685–692 (1997).

    MathSciNet  Google Scholar 

  58. A. Bakushinskii, “Universal linear approximations of solutions to nonlinear operator equations and their applications,” J. Inverse Ill-Posed Probl. 5 (6), 507–522 (1998).

    MathSciNet  MATH  Google Scholar 

  59. M. Yu. Kokurin and N. A. Yusupova, “Nondegenerate estimates for the convergence rate of iterative methods for ill-posed nonlinear operator equations,” Comput. Math. Math. Phys. 40 (6), 793–798 (2000).

    MathSciNet  MATH  Google Scholar 

  60. A. B. Bakushinskii, M. Yu. Kokurin, and N. A. Yusupova, “Necessary conditions for the convergence of iterative methods for solving irregular nonlinear operator equations,” Comput. Math. Math. Phys. 40 (7), 945–954 (2000).

    MathSciNet  MATH  Google Scholar 

  61. A. B. Bakushinsky and M. Yu. Kokurin, Algorithmic Analysis of Irregular Operator Equations (Lenand, Moscow, 2012) [in Russian].

    Google Scholar 

Download references

Funding

This work was performed within state assignment (project no. 1.5420.2017/8.9) and was supported by the Russian President’s program for the support of young scientists and graduate students (project no. SP-5252.2018.5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Bakushinskii, M. Yu. Kokurin or M. M. Kokurin.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakushinskii, A.B., Kokurin, M.Y. & Kokurin, M.M. Direct and Converse Theorems for Iterative Methods of Solving Irregular Operator Equations and Finite Difference Methods for Solving Ill-Posed Cauchy Problems. Comput. Math. and Math. Phys. 60, 915–937 (2020). https://doi.org/10.1134/S0965542520060020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520060020

Keywords:

Navigation