Skip to main content
Log in

New Technique for Formulation of Domain Decomposition Algorithms

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A new technique is proposed for constructing domain decomposition algorithms based on optimal control theory, the theory of inverse and ill-posed problems, application of adjoint equations, and modern iterative processes. The technique applies to a broad class of problems in mathematical physics (including ones with nonsymmetric operators, convection-dominant operators, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. I. Mateeva and B. V. Pal’tsev, “Division of the region when solving a boundary value problem for Poisson’s equation in a region of complicated structure,” USSR Comput. Math. Math. Phys. 13 (6), 89–111 (1973).

    Article  Google Scholar 

  2. L. B. Tsvik, “Generalization of the Schwarz algorithm to domains joined without overlap,” Dokl. Akad. Nauk SSSR 224 (2), 309–312 (1975).

    MathSciNet  Google Scholar 

  3. V. V. Smelov, “The principle of iteration over subdomains in problems involving the transport equation,” USSR Comput. Math. Math. Phys. 21 (6), 131–143 (1981).

    Article  Google Scholar 

  4. V. G. Osmolovskii and V. Ya. Rivkind, “A method of separating the domains for elliptic equations with discontinuous coefficients,” USSR Comput. Math. Math. Phys. 21 (1), 33–38 (1981).

    Article  Google Scholar 

  5. V. E. Katsnel’son and V. V. Men’shikov, “An analogue of the Schwarz alternating method,” Function Theory, Functional Analysis, and Their Applications (Kharkov. Gos. Univ., Kharkov, 1973), Vol. 17, pp. 206–215 [in Russian].

    Google Scholar 

  6. Yu. A. Kuznetsov, Iterative Methods in Subspaces (Otd. Vychisl. Mat. Akad. Nauk SSSR, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  7. A. M. Matsokin, “Fictitious component method and a modified difference analogue of the Schwarz method,” Computational Methods of Linear Algebra (Novosibirsk, 1980) [in Russian].

    Google Scholar 

  8. V. I. Agoshkov, Preprint No. 96, OVM AN SSSR (Department of Numerical Mathematics, USSR Academy of Sciences, Moscow, 1985).

  9. V. I. Agoshkov, Preprint No. 118, OVM AN SSSR (Department of Numerical Mathematics, USSR Academy of Sciences, Moscow, 1986).

  10. V. I. Agoshkov, Preprint No. 120, OVM AN SSSR (Department of Numerical Mathematics, USSR Academy of Sciences, Moscow, 1986).

  11. V. I. Agoshkov and V. I. Lebedev, “Poincaré–Steklov operators and domain decomposition methods in variational problems,” in Computational Possesses and Systems (Nauka, Moscow, 1985), Vol. 2, pp. 173–227 [in Russian].

    Google Scholar 

  12. R. Glovinsky, “Domain decomposition methods for nonlinear problems in fluid dynamics,” Rapports de Recherche (INRIA, Paris, 1982).

    Google Scholar 

  13. O. B. Wildlund, “Iterative methods for elliptic problems on regions partitioned into substructures and the biharmonic Dirichlet problem,” Preprint (1983).

  14. A. Fischler, “Resolution du problem de Stokes par une methode de decomposition de domains: Application a la simulation numerique d’ecoulements de Navier–Stokes de fluides incompressibles en elements finis,” Thèse pour l’obtention du diplome de docteur de 3e cycle (L’Universite Pierre et Marie Curie, Paris, 1985), V. 6.

  15. M. Dryja, “Domain decomposition method for solving variational difference systems for elliptic problems,” Variational Difference Methods in Mathematical Physics (Otd. Vychisl. Mat. Akad. Nauk SSSR, Moscow, 1984), pp. 46–57 [in Russian].

    MATH  Google Scholar 

  16. M. Dryja, “A capacitance matrix method for Dirichlet problem on polygon region,” Numer. Math. 39, 51–64 (1982).

    Article  MathSciNet  Google Scholar 

  17. A. Quarteroni and G. S. Landriani, Domain Decomposition Preconditioners for the Spectral Collocation Method (Istituto di Anal.i Numecica del Consiglio Nazionale delle Ricerche, Pavia, 1987).

    MATH  Google Scholar 

  18. T. F. Chan, “Analysis of preconditioners for domain decomposition,” SIAM J. Numer. Appl. 24, 382–390 (1987).

    Article  MathSciNet  Google Scholar 

  19. V. I. Lebedev and V. I. Agoshkov, Poincaré–Steklov Operators and Their Applications in Analysis (Otd. Vychisl. Mat. Akad. Nauk SSSR, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  20. A. G. Yagola, “On the choice of regularization parameter when solving ill-posed problems in reflexive spaces,” USSR Comput. Math. Math. Phys. 20 (3), 40–52 (1983).

    Article  Google Scholar 

  21. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Halsted, New York, 1977; Nauka, Moscow, 1979).

  22. V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications (Nauka, Moscow, 1978; VSP, Utrecht, 2002).

  23. A. M. Denisov, Introduction to the Theory of Inverse Problems (Mosk. Gos. Univ., Moscow, 1994) [in Russian].

    Google Scholar 

  24. V. I. Agoshkov, Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 2016) [in Russian].

    Google Scholar 

  25. V. I. Agoshkov, Methods for Solving Inverse Problems and Variational Data Assimilation Problems in Large-Scale Ocean Dynamics (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 2016) [in Russian].

    Google Scholar 

  26. F. P. Vasil’ev, Numerical Methods for Solving Optimization Problems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  27. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications (Dunod, Paris, 1968).

    MATH  Google Scholar 

  28. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979).

    MATH  Google Scholar 

  29. G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1980; Springer-Verlag, New York, 1982).

  30. G. I. Marchuk, V. P. Dymnikov, and V. B. Zalesny, Mathematical Models in Geophysical Hydrodynamics and Numerical Methods for Their Implementation (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  31. V. I. Agoshkov, Domain Decomposition Methods in Ocean Hydrothermodynamics (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 2017) [in Russian].

    Google Scholar 

  32. J.-P. Aubin, Approximation of Elliptic Boundary Value Problems (Wiley-Interscience, New York, 1972).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The numerical results presented in this paper were obtained by N.R. Lezina, to whom I am grateful for kindly placing these data in my disposal.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00595.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Agoshkov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agoshkov, V.I. New Technique for Formulation of Domain Decomposition Algorithms. Comput. Math. and Math. Phys. 60, 353–369 (2020). https://doi.org/10.1134/S0965542520030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520030021

Keywords:

Navigation