Skip to main content
Log in

Existence of Solutions of Nonlinear Strongly Dissipative Wave Equations with Acoustic Transmission Conditions

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The mixed problem for nonlinear strongly dissipative wave equations with acoustic transmission conditions is considered. An existence and uniqueness theorem for local solutions is proved using the Faedo–Galerkin approximations, the compactness method, and the fixed point theorem. The existence of global solutions of this problem is also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. F. Webb, “Existence and asymptotic behavior for a strongly damped nonlinear wave equation,” Can. J. Math. 32, 631–643 (1980).

    Article  MathSciNet  Google Scholar 

  2. V. K. Kalantarov and S. Zelik, “Finite-dimensional attractors for the quasi-linear strongly-damped wave equation,” J. Differ. Equations 247, 1120–1155 (2009).

    Article  MathSciNet  Google Scholar 

  3. V. Pata and S. Zelik, “Smooth attractors for strongly-damped wave equations,” Nonlinearity 19, 1495–1506 (2006).

    Article  MathSciNet  Google Scholar 

  4. V. Pata and M. Squassina, “On the strongly-damped wave equation,” Commun. Math. Phys. 253 (3), 511–533 (2005).

    Article  MathSciNet  Google Scholar 

  5. M. Yang and C. Sun, “Dynamics of strongly-damped wave equations in locally uniform spaces: Attractors and asymptotic regularity,” Trans. Am. Math. Soc. 361 (2), 1069–1101 (2009).

    Article  MathSciNet  Google Scholar 

  6. R. Dautray and J. L. Lions, Analyse et Calcul Numerique pour les Sciences et les Techniques (Masson, Paris, 1984), Vol. 1.

    MATH  Google Scholar 

  7. J. E. Muñoz Rivera and H. Oquendo Portillo, “The transmission problem of viscoelastic waves,” Acta Appl. Math. 60, 1–21 (2000).

    Article  MathSciNet  Google Scholar 

  8. J. J. Bae, “Nonlinear transmission problem for wave equation with boundary condition of memory type,” Acta Appl. Math. 110 (2), 907–919 (2010).

    Article  MathSciNet  Google Scholar 

  9. A. B. Aliev and E. H. Mammadhasanov, “Well-posedness of initial boundary value problem on longitudinal impact on a composite linear viscoelastic bar,” Math. Methods Appl. Sci. 40 (14), 5380–5390 (2017).

    Article  MathSciNet  Google Scholar 

  10. C. G. Gal, G. R. Goldstein, and J. A. Goldstein, “Oscillatory boundary conditions for acoustic wave equations,” J. Evol. Equations 3 (4), 623–635 (2003).

    Article  MathSciNet  Google Scholar 

  11. J. T. Beale and S. I. Rosencrans, “Acoustic boundary conditions,” Bull. Am. Math. Soc. 80 (6), 1276–1278 (1974).

    Article  MathSciNet  Google Scholar 

  12. J. T. Beale, “Acoustic scattering from locally reacting surfaces,” Indiana Univ. Math. J. 26, 199–222 (1977).

    Article  MathSciNet  Google Scholar 

  13. C. L. Frota and A. Vicente, “A hyperbolic system of Klein–Gordon type with acoustic boundary conditions,” Int. J. Pure Appl. Math. 47 (2), 185–198 (2008).

    MathSciNet  MATH  Google Scholar 

  14. D. Mugnolo, “Abstract wave equations with acoustic boundary conditions,” Math. Nachr. 279 (3), 299–318 (2006).

    Article  MathSciNet  Google Scholar 

  15. A. Vicente, “Wave equation with acoustic/memory boundary conditions,” Bol. Soc. Parana Mat. Ser. 27 (1), 29–39 (2009).

    MathSciNet  MATH  Google Scholar 

  16. Y. Boukhatem and B. Benabderrahmane, “Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions,” Nonlinear Anal. 97, 191–209 (2014).

    Article  MathSciNet  Google Scholar 

  17. S. A. Gabov, New Problems in Mathematical Theory of Waves (Fizmatlit, Moscow, 1998) [in Russian].

    MATH  Google Scholar 

  18. P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).

    Google Scholar 

  19. A. B. Aliev and S. E. Isayeva, “Exponential stability of the nonlinear transmission acoustic problem,” Math. Methods Appl. Sci. 41 (16), 7055–7073 (2018).

    Article  MathSciNet  Google Scholar 

  20. A. B. Aliev and S. E. Isayeva, “Existence and nonexistence of global solutions for nonlinear transmission acoustic problem,” Turk. J. Math. 42, 3211–3231 (2018).

    Article  MathSciNet  Google Scholar 

  21. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications (Springer-Verlag, Berlin, 1972).

    Book  Google Scholar 

  22. V. Georgiev and G. Todorova, “Existence of a global solution of the wave equation with nonlinear damping and source term,” J. Differ. Equations 109, 295–308 (1994).

    Article  Google Scholar 

  23. H. Brezis, Analyse fonctionelle théorie et applications (Masson, Paris, 1983).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Isayeva.

Additional information

Translated by N. Berestova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isayeva, S.E. Existence of Solutions of Nonlinear Strongly Dissipative Wave Equations with Acoustic Transmission Conditions. Comput. Math. and Math. Phys. 60, 286–301 (2020). https://doi.org/10.1134/S0965542520020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520020062

Keywords:

Navigation