Skip to main content
Log in

Locally Polynomial Method for Solving Systems of Linear Inequalities

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A numerical method combining a gradient technique with the projection onto a linear manifold is proposed for solving systems of linear inequalities. It is shown that the method converges in a finite number of iterations and its running time is estimated as a polynomial in the space dimension and the number of inequalities in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. G. Karmanov, Mathematical Programming (Nauka, Moscow, 2000) [in Russian].

    MATH  Google Scholar 

  2. A. I. Golikov and Yu. G. Evtushenko, “Theorems of the alternative and their applications in numerical methods,” Comput. Math. Math. Phys. 43 (3), 338–358 (2003).

    MathSciNet  Google Scholar 

  3. Y. G. Evtushenko and A. I. Golikov, “New perspective on the theorems of alternative,” in High Performance Algorithms and Software for Nonlinear Optimization (Springer, New York, 2003), pp. 227–241.

    Google Scholar 

  4. A. A. Tret’yakov, “A finite-termination gradient projection method for solving systems of linear inequalities,” Russ. J. Numer. Anal. Math. Model. 25 (3), 279–288 (2010).

    MathSciNet  MATH  Google Scholar 

  5. A. Tret’yakov and E. Tyrtyshnikov, “Exact differentiable penalty for a problem of quadratic programming with the use of a gradient-projective method,” Russ. J. Numer. Anal. Math. Model. 30 (2), 121–128 (2015).

    Article  MathSciNet  Google Scholar 

  6. S. Smale, “Mathematical problems for the next century,” in Mathematics: Frontiers and Perspectives (Am. Math. Soc., Providence, RI, 2000), pp. 271–294.

  7. O. L. Mangasarian, “A finite Newton method for classification problems,” Technical Report, 01-11 (Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, 2001), pp. 01–11.

  8. O. L. Mangasarian, “A Newton method for linear programming,” J. Optim. Theory Appl. 121 (1), 1–18 (2004).

    Article  MathSciNet  Google Scholar 

  9. K. N. Belash and A. A. Tret’yakov, “Methods for solving degenerate problems,” USSR Comput. Math. Math. Phys. 28 (4), 90–94 (1988).

    Article  MathSciNet  Google Scholar 

  10. O. A. Brezhneva and A. A. Tret’yakov, “The P-factor-Lagrange methods for degenerate nonlinear programming,” Numer. Funct. Anal. Optim. 28 (9–10), 1051–1086 (2007).

    Article  MathSciNet  Google Scholar 

  11. O. A. Brezhneva, Yu. G. Evtushenko, and A. A. Tret’yakov, “The 2-factor method with a modified Lagrange function for degenerate constrained optimization problems,” Dokl. Math. 73 (3), 384–387 (2006).

    Article  Google Scholar 

  12. J. L. Goffin, “On the non-polynomiality of the relaxation method for systems of linear inequalities,” Math. Program. 22 (1), 93–103 (1982).

    Article  Google Scholar 

  13. F. Facchinei, A. Fischer, and C. Kanzow, “On the accurate identification of active constraints,” SIAM J. Optim. 9 (1), 14–32 (1998).

    Article  MathSciNet  Google Scholar 

  14. E. Szczepanik and A. Tret’yakov, “p-factor methods for nonregular inequality-constrained optimization problems,” Nonlinear Anal. 69 (12), 4241–4251 (2008).

    Article  MathSciNet  Google Scholar 

  15. S. J. Wright, “An algorithm for degenerate nonlinear programming with rapid local convergence,” SIAM J. Optim. 15 (3), 673–696 (2005).

    Article  MathSciNet  Google Scholar 

  16. A. Tret’yakov and E. E. Tyrtyshnikov, “A finite gradient-projective solver for a quadratic programming problem,” Russ. J. Numer. Anal. Math. Model. 28 (3), 289–300 (2013).

    Article  MathSciNet  Google Scholar 

  17. S. P. Han, Least-Squares Solution of Linear Inequalities (Wisconsin Univ.-Madison Mathematics Research Center, 1980), No. MRC-TSR-2141.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 17-07-00510.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. G. Evtushenko or A. A. Tret’yakov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evtushenko, Y.G., Tret’yakov, A.A. Locally Polynomial Method for Solving Systems of Linear Inequalities. Comput. Math. and Math. Phys. 60, 222–226 (2020). https://doi.org/10.1134/S0965542520020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520020050

Keywords:

Navigation