Skip to main content
Log in

High Accuracy Trigonometric Approximations of the Real Bessel Functions of the First Kind

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct high accuracy trigonometric interpolants from equidistant evaluations of the Bessel functions \({{J}_{n}}(x)\) of the first kind and integer order. The trigonometric models are cosine or sine based depending on whether the Bessel function is even or odd. The main novelty lies in the fact that the frequencies in the trigonometric terms modelling \({{J}_{n}}(x)\) are also computed from the data in a Prony-type approach. Hence the interpolation problem is a nonlinear problem. Some existing compact trigonometric models for the Bessel functions \({{J}_{n}}(x)\) are hereby rediscovered and generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Andrusyk, “Infinite series representations for Bessel functions of the first kind of integer order,” Tech. Rep. (Inst. for Condensed Matter Physics, Lviv, Ukraine, 2012). arXiv:1210.2109

  2. N. M. Blachman and S. H. Mousavinezhad, “Trigonometric approximations for Bessel functions,” IEEE Trans. Aerosp. Electron. Syst. 22, 2–7 (1986).

    Article  Google Scholar 

  3. A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland, and W. B. Jones, Handbook of Continued Fractions for Special Functions (Springer, Berlin, 2008).

    MATH  Google Scholar 

  4. A. Cuyt and W. Lee, “Sparse trigonometric and sinc spectral analysis,” Tech. Rep. (Univ. of Antwerp, Antwerp, 2019) [in preparation].

    Google Scholar 

  5. M. Giesbrecht, G. Labahn, and W. Lee, “Symbolic-numeric sparse polynomial interpolation in Chebyshev basis and trigonometric interpolation,” in Proceedings of the Workshop on Computer Algebra in Scientific Computation (CASC) (2004), pp. 195–204.

  6. F. B. Hildebrand, Introduction to Numerical Analysis Publications, 2nd ed. (Dover, 1987).

  7. K. Oldham, J. Myland, and J. Spanier, An Atlas of Functions, 2nd ed. (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-48807-3

  8. R. de Prony, “Essai expérimental et analytique sur les lois de la dilatabilité des uides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures,” J. Ec. Poly. 1, 24–76 (1795).

    Google Scholar 

  9. I. N. Sneddon, The Use of Integral Transforms (McGraw Hill, New York, 1972).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Cuyt, Wen-shin Lee or Min Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuyt, A., Lee, Ws. & Wu, M. High Accuracy Trigonometric Approximations of the Real Bessel Functions of the First Kind. Comput. Math. and Math. Phys. 60, 119–127 (2020). https://doi.org/10.1134/S0965542520010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520010078

Navigation