N. H. Abdel-All, S. A.-N. Badr, M. A. Soliman, and S. A. Hassan, “Intersection curves of two implicit surfaces in R3,” J. Math. Comput. Sci. 2 (2), 152–171 (2012).
MathSciNet
Google Scholar
S. S. Abhyankar and C. J. Bajaj, “Automatic parameterization of rational curves and surfaces. IV: Algebraic space curves,” ACM Trans. Graphics 8 (4), 325–334 (1989).
Article
Google Scholar
C. Asteasu, “Intersection of arbitrary surfaces,” Comput.-Aided Des. 20 (9), 533–538 (1988).
Article
Google Scholar
C. L. Bajaj, C. M. Hoffmann, R. E. Lynch, and J. E. H. Hopcroft, “Tracing surface intersections,” Comput.-Aided Geom. Des. 5 (4), 285–307 (1988).
MathSciNet
Article
Google Scholar
A. I. Belokrys-Fedotov, V. A. Garanzha, and L. N. Kudryavtseva, “Generation of Delaunay meshes in implicit domains with edge sharpening,” Comput. Math. Math. Phys. 56 (11), 1901–1918 (2016).
MathSciNet
Article
Google Scholar
H. Borouchaki and P. L. George, Meshing, Geometric Modeling and Numerical Simulation: 1. Form Functions, Triangulations, and Geometric Modeling (Wiley-ISTE, 2017).
Book
Google Scholar
J. P. Boyd, “Computing the zeros, maxima, and inflection points of Chebyshev, Legendre and Fourier series: Solving transcendental equations by spectral interpolation and polynomial rootfinding,” J. Eng. Math. 56 (3), 203–219 (2006).
MathSciNet
Article
Google Scholar
S. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, 3rd ed. (Springer, Berlin, 2008).
Book
Google Scholar
E. Burman, P. Hansbo, M. G. Larson, G. Mats, and A. Massing, “Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions,” ESAIM: Math. Model Numer. Anal. (2018).
B. R. de Araújo, D. S. Lopes, P. Jepp, J. A. Jorge, and B. Wyvill, “A survey on implicit surface polygonization,” ACM Comput. Surv. 47 (4), Article 60 (2015).
Article
Google Scholar
S. Dey, R. M. O’Bara, and M. S. Shephard, “Towards curvilinear meshing in 3D: The case of quadratic simplices,” Comput.-Aided Des. 33 (3), 199–209 (2001).
Article
Google Scholar
S. Dey, M. S. Shephard, and E. J. Flaherty, “Geometry representation issues associated with p-version finite element computations,” Comput. Methods Appl. Mech. Eng. 150 (1), 39–55 (1997).
MathSciNet
Article
Google Scholar
S. Dey, R. M. O’bara, and M. S. Shephard, “Curvilinear mesh generation in 3D,” Proceedings of the 8th International Meshing Roundtable (1999), pp. 407–417.
B. U. Düldül and M. Düldül, “Can we find Willmore-like method for the tangential intersection problems?” J. Comput. Appl. Math. 302, 301–311 (2016).
MathSciNet
Article
Google Scholar
G. Dziuk, “Finite elements for the Beltrami operator on arbitrary surfaces,” in Partial Differential Equations and Calculus of Variations, Ed. by S. Hildebrandt and R. Leis, Lecture Notes in Mathematics (Springer, Berlin, 1988), Vol. 1357, pp. 142–155.
P. Frey and P.-L. George, Mesh Generation: Application to Finite Elements (Wiley, Chichester, 2008).
Book
Google Scholar
T. P. Fries, “Higher-order conformal decomposition FEM (CDFEM),” Comput. Methods Appl. Mech. Eng. 328, 75–98 (2018).
MathSciNet
Article
Google Scholar
T. P. Fries, S. Omerovic, D. Schöllhammer, and J. Steidl, “Higher-order meshing of implicit geometries: Part I. Integration and interpolation in cut elements,” Comput. Methods Appl. Mech. Eng. 313, 759–784 (2017).
MathSciNet
Article
Google Scholar
T. P. Fries and S. Omerovic, “Higher-order accurate integration of implicit geometries,” Int. J. Numer. Methods Eng. 106 (5), 323–371 (2016).
MathSciNet
Article
Google Scholar
T. P. Fries and D. Schöllhammer, “Higher-order meshing of implicit geometries: Part II. Approximations on manifolds,” Comput. Methods Appl. Mech. Eng. 326, 270–297 (2017).
MathSciNet
Article
Google Scholar
A. Gomes, Implicit Curves and Surfaces: Mathematics, Data Structures, and Algorithms (Springer, Dordrecht, 2009).
Book
Google Scholar
W. J. Gordon and C. A. Hall, “Construction of curvilinear coordinate systems and applications to mesh generation,” Int. J. Numer. Methods Eng. 7 (4), 461–477 (1973).
Article
Google Scholar
W. J. Gordon and C. A. Hall, “Transfinite element methods: Blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21 (2), 109–129 (1973).
MathSciNet
Article
Google Scholar
E. Hartmann, “A marching method for the triangulation of surfaces,” Visual Comput. 14 (3), 95–108 (1998).
Article
Google Scholar
C.-Y. Hu, T. Maekawa, N. M. Patrikalakis, M. Nicholas, and X. Ye, “Robust interval algorithm for surface intersections,” Comput.-Aided Des. 29 (9), 617–627 (1997).
Article
Google Scholar
P. M. Knupp, “Algebraic mesh quality metrics,” SIAM J. Sci. Comput. 23 (1), 193–218 (2001).
MathSciNet
Article
Google Scholar
D. S. H. Lo, Finite Element Mesh Generation (CRC Press, Boca Raton, FL, 2014).
Book
Google Scholar
S. H. Lo, “A new mesh generation scheme for arbitrary planar domains,” Int. J. Numer. Methods Eng. 21 (8), 1403–1426 (1985).
Article
Google Scholar
R. Löhner and P. Parikh, “Generation of three-dimensional unstructured grids by the advancing-front method,” Int. J. Numer. Methods Fluids 8 (10), 1135–1149 (1988).
Article
Google Scholar
W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” ACM SIGGRAPH Comput. Graphics 21 (4), 163–169 (1987).
Article
Google Scholar
B. Marussig and T. J. R. Hughes, “A review of trimming in isogeometric analysis: Challenges, data exchange, and simulation aspects,” Arch. Comput. Methods Eng. 25 (4), 1059–1127 (2018).
MathSciNet
Article
Google Scholar
K. Nakahashi and D. Sharov, “Direct surface triangulation using the advancing front method,” AIAA Paper 95-1686-CP, 442–451 (1995).
Y. Ohtake and A. G. Belyaev, “Dual/primal mesh optimization for polygonised implicit surfaces,” Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications (ACM, 2002), pp. 171–178.
A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko, “Function representation in geometric modeling: Concepts, implementation, and applications,” Visual Comput. 11 (8), 429–446 (1995).
Article
Google Scholar
N. M. Patrikalakis, “Interrogation of surface intersections,” Geometry Processing for Design and Manufacturing (SIAM, 1992), pp. 161–185.
Google Scholar
N. M. Patrikalakis, “Surface-to-surface intersections,” IEEE Comput. Graphics Appl. 13 (1), 89–95 (1993).
Article
Google Scholar
P.-O. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Rev. 46 (2), 329–345 (2004).
MathSciNet
Article
Google Scholar
A. A. G. Requicha, “Representations of rigid solid objects,” Computer Aided Design Modeling, Systems Engineering, CAD-Systems (Springer, Berlin, 1980), pp. 1–78.
Google Scholar
X. Roca, A. Gargallo-Peiró, and J. Sarrate, “Defining quality measures for high-order planar triangles and curved mesh generation,” Proceedings of the 20th International Meshing Roundtable (2011), pp. 365–383.
P. Solin, K. Segeth, and I. Dolezel, Higher-Order Finite Element Methods (Chapman and Hall/CRC, London, 2003).
Book
Google Scholar
J. W. Stanford and T. P. Fries, “Higher-order accurate meshing of implicitly defined tangential and transversal intersection curves,” Lecture Notes in Computer Science and Engineering (2018) (accepted).
J. W. Stanford and T. P. Fries, “A higher-order conformal decomposition finite element method for plane B-rep geometries,” Comput. Struct. 214, 15–27 (2019).
Article
Google Scholar
M. Turner, High-Order Mesh Generation for CFD Solvers, PhD Thesis (2017).