A. D. Alexandrov, Convex Polyhedra, Translated from the 1950 Russian edition by N. S. Dairbekov, S. S. Kutateladze, and A. B. Sossinsky (Springer-Verlag, Berlin, 2005).
F. Aurenhammer, “Power diagrams: Properties, algorithms, and applications,” SIAM J. Comput. 16 (1), 78–96 (1987).
MathSciNet
Article
Google Scholar
L. J. Billera, P. Filliman, and B. Sturmfels, “Constructions and complexity of secondary polytopes,” Adv. Math. 83 (2), 155–179 (1990).
MathSciNet
Article
Google Scholar
E. F. D’Azevedo, “Optimal triangular mesh generation by coordinate transformation,” SIAM J. Sci. Stat. Comput. 12 (4), 755–786 (1991).
MathSciNet
Article
Google Scholar
I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Birkhäuser, 1994).
Book
Google Scholar
X. Gu, F. Luo, J. Sun, and S.-T. Yau, “Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge–Ampere equations,” Asian J. Math. 20 (2), 383–398 (2016).
MathSciNet
Article
Google Scholar
A. V. Zelevinsky, I. M. Gel’fand, and M. M. Kapranov, “Newton polyhedra of principal a-determinants,” Sov. Math. Dokl. 308, 20–23 (1989).
MathSciNet
Google Scholar
I. Izmestiev, S. Klee, and I. Novik, “Simplicial moves on balanced complexes,” Adv. Math. 320, 82–114 (2017).
MathSciNet
Article
Google Scholar
F. Santos, J. A. De Loera, and J. Rambau, Triangulations, Structures for Algorithms, and Applications (Springer-Verlag, Berlin, 2010).
MATH
Google Scholar
B. Joe, “Construction of three-dimensional Delaunay triangulations using local transformations,” Comput.-Aided Geom. Des. 8 (2), 123–142 (1991).
MathSciNet
Article
Google Scholar
J. Ruppert and R. Seidel, “On the difficulty of triangulating three-dimensional nonconvex polyhedra,” Discrete Comput. Geom. 7, 227–253 (1992).
MathSciNet
Article
Google Scholar
H. Si, “On monotone sequences of directed flips, triangulations of polyhedra, and structural properties of a directed flip graph” (2018). http://arxiv.org/abs/1809.09701 arXiv:1809.09701