Skip to main content

Hybrid Voronoi Mesh Generation: Algorithms and Unsolved Problems

Abstract

We consider problem of constructing Voronoi mesh where the union of Voronoi cells approximates the computational domain with a piecewise smooth boundary. In the 2d case the smooth boundary fragments are approximated by the Voronoi edges and Voronoi vertices are placed near summits of sharp boundary corners. We suggest self-organization meshing algorithm which covers the boundary of domain by an almost-structured band of non-simplicial Delaunay cells. This band consists of quadrangles on the smooth boundary segment and convex polygons around sharp corners. Dual Voronoi mesh is double layered orthogonal structure where central line of the layer approximates the boundary. Overall Voronoi mesh has a hybrid structure and consists of high quality convex polygons in the core of the domain and orthogonal layered structure near boundaries. We introduce refinement schemes for the Voronoi boundary layers, in particular near sharp corners. In the case when the boundary of domain is defined explicitly we suggest Voronoi meshing algorithm based on circle placement on the boundary. We discuss problems related to 3d case generalization of suggested algorithm and illustrate ideas and difficulties on relatively simple 3d test cases.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.

REFERENCES

  1. R. Garimella, J. Kim, and M. Berndt, “Polyhedral mesh generation and optimization for nonmanifold domains,” Proceedings of the 22nd International Meshing Roundtable (Springer, Cham, 2014), pp. 313–330.

  2. S. Y. Lee, “Polyhedral mesh generation and a treatise on concave geometrical edges,” Procedia Eng. 124, 174–186 (2015).

    Article  Google Scholar 

  3. V. A. Garanzha, L. N. Kudryavtseva, and V. O. Tsvetkova, “Structured orthogonal near-boundary Voronoi mesh layers for planar domains,” in Lecture Notes in Computational Science and Engineering, Vol. 131: Numerical Geometry, Grid Generation, and Scientific Computing, Ed. by V. A. Garanzha, L. Kamenski, and H. Si (Springer International, Berlin, 2019).

  4. N. Amenta and M. Bern, “Surface reconstruction by Voronoi filtering,” Discrete Comput. Geom. 22 (4), 481–504 (1999).

  5. Y. Liu, W. Wang, B. Levy, F. Sun, D. M. Yan, L. Lu, and C. Yang, “On centroidal Voronoi tessellation: Energy smoothness and fast computation,” ACM Trans. Graphics 28 (4), 101 (2009).

    Google Scholar 

  6. D. M. Yan, B. Levy, Y. Liu, F. Sun, and W. Wang, “Isotropic remeshing with fast and exact computation of restricted Voronoi diagram,” Comput. Graphics Forum 28 (5), 1445–1454 (2009).

    Article  Google Scholar 

  7. M. Budninskiy, B. Liu, F. de Goes, Y. Tong, P. Alliez, and M. Desbrun, “Optimal Voronoi tessellations with Hessian-based anisotropy,” ACM Trans. Graphics 35 (6), Article 242 (2016).

    Google Scholar 

  8. J. Tournois, P. Alliez, and O. Devillers, “2D centroidal Voronoi tessellations with constraints,” Numer. Math. Theory Methods Appl. 3 (2), 212–222 (2010).

    MathSciNet  Article  Google Scholar 

  9. B. Lévy and Y. Liu, “Lp centroidal Voronoi tessellation and its applications,” ACM Trans. Graph. 29 (4), Article 119 (2010).

    Article  Google Scholar 

  10. P.-O. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Rev. 46 (2), 329–345 (2004).

    MathSciNet  Article  Google Scholar 

  11. V. A. Garanzha and L. N. Kudryavtseva, “Generation of three-dimensional Delaunay meshes from weakly structured and inconsistent data,” Comput. Math. Math. Phys. 52 (3), 427–447 (2012).

    MathSciNet  Article  Google Scholar 

  12. D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational shape approximation,” ACM Trans. Graphics 23 (3), 905–914 (2004).

    Article  Google Scholar 

  13. V. A. Garanzha, “Discrete extrinsic curvatures and approximation of surfaces by polar polyhedra,” Comput. Math. Math. Phys. 50 (1), 65–92 (2010).

    MathSciNet  Article  Google Scholar 

  14. F. Gunther, C. Jiang, and H. Pottmann, “Smooth polyhedral surfaces” (2017) arXiv:1703.05318.

  15. Y. Liu, H. Pottmann, J. Wallner, Y. L. Yang, and W. Wang, “Geometric modeling with conical meshes and developable surfaces,” ACM Trans. Graphics 25 (3), 681–689 (2006).

    Article  Google Scholar 

  16. T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring of Hermite data,” ACM Trans. Graphics 21 (3), 339–346 (2002).

    Article  Google Scholar 

  17. Y. Ohtake and A. Belyaev, “Dual/primal mesh optimization for polygonized implicit surfaces,” Proceedings of the 7th ACM Symposium on Solid Modeling and Applications (SMA´02) (ACM, 2002), pp. 171–178.

  18. S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory 28 (2), 129–137 (1982).

    MathSciNet  Article  Google Scholar 

  19. J. Ruppert, “A Delaunay refinement algorithm for quality 2-dimensional mesh generation,” J. Algorithms 18 (3), 548–585 (1995).

    MathSciNet  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant 18-01-00726 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Garanzha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garanzha, V.A., Kudryavtseva, L.N. & Tsvetkova, V.O. Hybrid Voronoi Mesh Generation: Algorithms and Unsolved Problems. Comput. Math. and Math. Phys. 59, 1945–1964 (2019). https://doi.org/10.1134/S0965542519120078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519120078

Keywords:

  • Delaunay–Voronoi meshes
  • orthogonal Voronoi meshes
  • polygonal meshes
  • polyhedral meshes