F. Gibou, R. Fedkiw, and S. Osher, “A review of level-set methods and some recent applications,” J. Comput. Phys. 353, 82–109 (2017).
MathSciNet
Article
Google Scholar
P. G. Tucker, “Hybrid Hamilton–Jacobi–Poisson wall distance function model,” Comput. Fluids 44 (1), 130–142 (2011).
Article
Google Scholar
B. Roget and J. Sitaraman, “Wall distance search algorithm using voxelized marching spheres,” J. Comput. Phys. 241, 76–94 (2013).
MathSciNet
Article
Google Scholar
A. Biswas, V. Shapiro, and I. Tsukanov, “Heterogeneous material modeling with distance fields,” Comput. Aided Geom. Des. 21, 215–242 (2004).
MathSciNet
Article
Google Scholar
H. Xia and P. G. Tucker, “Fast equal and biased distance fields for medial axis transform with meshing in mind,” Appl. Math. Model. 35, 5804–5819 (2011).
MathSciNet
Article
Google Scholar
I. Babuška, U. Banerjee, and J. E. Osborn, “Survey of meshless and generalized finite element methods: A unified approach,” Acta Numer. 12, 1–125 (2003).
MathSciNet
Article
Google Scholar
M. Freytag, V. Shapiro, and I. Tsukanov, “Finite element analysis in situ,” Finite Elem. Anal. Des. 47 (9), 957–972 (2011).
Article
Google Scholar
C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Rob. 32, 1309–1332 (2016).
Article
Google Scholar
F. Calakli and G. Taubin, “SSD: Smooth signed distance surface reconstruction,” Comput. Graphics Forum 30 (7), 1993–2002 (2011).
Article
Google Scholar
M. Zollhöfer, A. Dai, M. Innmann, C. Wu, M. Stamminger, C. Theobalt, and M. Nießner, “Shading-based refinement on volumetric signed distance functions,” ACM Trans. Graphics 34 (4), 96:1–96:14 (2015).
B. Zhu, M. Skouras, D. Chen, and W. Matusik, “Two-scale topology optimization with microstructures,” ACM Trans. Graphics 36 (5), 36:1–36:14 (2017).
A. Belyaev, P.-A. Fayolle, and A. Pasko, “Signed Lp-distance fields,” Comput.-Aided Des. 45, 523–528 (2013).
MathSciNet
Article
Google Scholar
K. Crane, C. Weischedel, and M. Wardetzky, “Geodesics in heat: A new approach to computing distance based on heat flow,” ACM Trans. Graphics 32, 152:1–152:11 (2013).
A. Belyaev and P.-A. Fayolle, “On variational and PDE-based distance function approximations,” Comput. Graphics Forum 34 (8), 104–118 (2015).
Article
Google Scholar
B. Lee, J. Darbon, S. Osher, and M. Kang, “Revisiting the redistancing problem using the Hopf–Lax formula,” J. Comput. Phys. 330, 268–281 (2017).
MathSciNet
Article
Google Scholar
M. Royston, A. Pradhana, B. Lee, Y. T. Chow, W. Yin, J. Teran, and S. Osher, “Parallel redistancing using the Hopf–Lax formula,” J. Comput. Phys. 365, 7–17 (2018).
MathSciNet
Article
Google Scholar
R. Glowinski, “On alternating direction methods of multipliers: A historical perspective,” in Modeling, Simulation, and Optimization for Science and Technology, Ed. by W. Fitzgibbon, Y. A. Kuznetsov, P. Neittaanmäki, and O. Pironneau (Springer, 2014), pp. 59–82.
Google Scholar
A. Belyaev and P.-A. Fayolle, “A variational method for accurate distance function estimation,” in Lecture Notes in Computational Science and Engineering, Vol. 131: Numerical Geometry, Grid Generation, and Scientific Computing, NUMGRID 2018/Voronoi 150 (Springer International, Berlin, 2019).
T. Bhattacharya, E. DiBenedetto, and J. Manfredi, “Limits as p → ∞ of Δpup = f and related extremal problems,” Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale Nonlinear PDEs (1989), pp. 15–68.
B. Kawohl, “On a family of torsional creep problems,” J. Reine Angew. Math. 410 (1), 1–22 (1990).
MathSciNet
MATH
Google Scholar
N. A. Wukie and P. D. Orkwis, “A p-Poisson wall distance approach for turbulence modeling,” in 23rd AIAA Computational Fluid Dynamics Conference (2017).
G. Pólya and G. Szego, Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, Princeton, 1951).
Book
Google Scholar
P.-A. Fayolle and A. Belyaev, “p-Laplace diffusion for distance function estimation, optimal transport approximation, and image enhancement,” Comput. Aided Geom. Des. 67, 1–20 (2018).
MathSciNet
Article
Google Scholar
P. Butzer and F. Jongmans, “P.L. Chebyshev (1821–1894): A guide to his life and work,” J. Approximation Theory 96, 111–138 (1999).
MathSciNet
Article
Google Scholar