Skip to main content

On Variational and PDE-Based Methods for Accurate Distance Function Estimation


A new variational problem for accurate approximation of the distance from the boundary of a domain is proposed and studied. It is shown that the problem can be efficiently solved by the alternating direction method of multipliers. Links between this problem and \(p\)-Laplacian diffusion are established and studied. Advantages of the proposed distance function estimation method are demonstrated by numerical experiments.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. F. Gibou, R. Fedkiw, and S. Osher, “A review of level-set methods and some recent applications,” J. Comput. Phys. 353, 82–109 (2017).

    MathSciNet  Article  Google Scholar 

  2. P. G. Tucker, “Hybrid Hamilton–Jacobi–Poisson wall distance function model,” Comput. Fluids 44 (1), 130–142 (2011).

    Article  Google Scholar 

  3. B. Roget and J. Sitaraman, “Wall distance search algorithm using voxelized marching spheres,” J. Comput. Phys. 241, 76–94 (2013).

    MathSciNet  Article  Google Scholar 

  4. A. Biswas, V. Shapiro, and I. Tsukanov, “Heterogeneous material modeling with distance fields,” Comput. Aided Geom. Des. 21, 215–242 (2004).

    MathSciNet  Article  Google Scholar 

  5. H. Xia and P. G. Tucker, “Fast equal and biased distance fields for medial axis transform with meshing in mind,” Appl. Math. Model. 35, 5804–5819 (2011).

    MathSciNet  Article  Google Scholar 

  6. I. Babuška, U. Banerjee, and J. E. Osborn, “Survey of meshless and generalized finite element methods: A unified approach,” Acta Numer. 12, 1–125 (2003).

    MathSciNet  Article  Google Scholar 

  7. M. Freytag, V. Shapiro, and I. Tsukanov, “Finite element analysis in situ,” Finite Elem. Anal. Des. 47 (9), 957–972 (2011).

    Article  Google Scholar 

  8. C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Rob. 32, 1309–1332 (2016).

    Article  Google Scholar 

  9. F. Calakli and G. Taubin, “SSD: Smooth signed distance surface reconstruction,” Comput. Graphics Forum 30 (7), 1993–2002 (2011).

    Article  Google Scholar 

  10. M. Zollhöfer, A. Dai, M. Innmann, C. Wu, M. Stamminger, C. Theobalt, and M. Nießner, “Shading-based refinement on volumetric signed distance functions,” ACM Trans. Graphics 34 (4), 96:1–96:14 (2015).

  11. B. Zhu, M. Skouras, D. Chen, and W. Matusik, “Two-scale topology optimization with microstructures,” ACM Trans. Graphics 36 (5), 36:1–36:14 (2017).

  12. A. Belyaev, P.-A. Fayolle, and A. Pasko, “Signed Lp-distance fields,” Comput.-Aided Des. 45, 523–528 (2013).

    MathSciNet  Article  Google Scholar 

  13. K. Crane, C. Weischedel, and M. Wardetzky, “Geodesics in heat: A new approach to computing distance based on heat flow,” ACM Trans. Graphics 32, 152:1–152:11 (2013).

  14. A. Belyaev and P.-A. Fayolle, “On variational and PDE-based distance function approximations,” Comput. Graphics Forum 34 (8), 104–118 (2015).

    Article  Google Scholar 

  15. B. Lee, J. Darbon, S. Osher, and M. Kang, “Revisiting the redistancing problem using the Hopf–Lax formula,” J. Comput. Phys. 330, 268–281 (2017).

    MathSciNet  Article  Google Scholar 

  16. M. Royston, A. Pradhana, B. Lee, Y. T. Chow, W. Yin, J. Teran, and S. Osher, “Parallel redistancing using the Hopf–Lax formula,” J. Comput. Phys. 365, 7–17 (2018).

    MathSciNet  Article  Google Scholar 

  17. R. Glowinski, “On alternating direction methods of multipliers: A historical perspective,” in Modeling, Simulation, and Optimization for Science and Technology, Ed. by W. Fitzgibbon, Y. A. Kuznetsov, P. Neittaanmäki, and O. Pironneau (Springer, 2014), pp. 59–82.

    Google Scholar 

  18. A. Belyaev and P.-A. Fayolle, “A variational method for accurate distance function estimation,” in Lecture Notes in Computational Science and Engineering, Vol. 131: Numerical Geometry, Grid Generation, and Scientific Computing, NUMGRID 2018/Voronoi 150 (Springer International, Berlin, 2019).

  19. T. Bhattacharya, E. DiBenedetto, and J. Manfredi, “Limits as p → ∞ of Δpup = f and related extremal problems,” Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale Nonlinear PDEs (1989), pp. 15–68.

  20. B. Kawohl, “On a family of torsional creep problems,” J. Reine Angew. Math. 410 (1), 1–22 (1990).

    MathSciNet  MATH  Google Scholar 

  21. N. A. Wukie and P. D. Orkwis, “A p-Poisson wall distance approach for turbulence modeling,” in 23rd AIAA Computational Fluid Dynamics Conference (2017).

  22. G. Pólya and G. Szego, Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, Princeton, 1951).

    Book  Google Scholar 

  23. P.-A. Fayolle and A. Belyaev, “p-Laplace diffusion for distance function estimation, optimal transport approximation, and image enhancement,” Comput. Aided Geom. Des. 67, 1–20 (2018).

    MathSciNet  Article  Google Scholar 

  24. P. Butzer and F. Jongmans, “P.L. Chebyshev (1821–1894): A guide to his life and work,” J. Approximation Theory 96, 111–138 (1999).

    MathSciNet  Article  Google Scholar 

Download references


The Gargoyle mesh model is courtesy of AIM@SHAPE and the Lucy mesh model is courtesy of the Stanford Graphics Laboratory.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to P.-A. Fayolle or A. G. Belyaev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fayolle, PA., Belyaev, A.G. On Variational and PDE-Based Methods for Accurate Distance Function Estimation. Comput. Math. and Math. Phys. 59, 2009–2016 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • distance function
  • p-Laplacian
  • variational methods