Skip to main content

Immersed Boundary Method on Deformable Unstructured Meshes for Airfoil Aeroacoustic Simulation

Abstract

An immersed boundary method on unstructured meshes is used in serial eddy-resolving simulations of turbulent flows over individual bodies with a changeable configuration and position. The corresponding numerical technique is based on mesh deformation and dynamic adaptation of a moving mesh without changing its topology. The described approach makes it possible to substantially reduce the computational costs of serial computations with variations in geometric parameters aimed at optimizing the shapes of airfoil elements. The performance of the technique is demonstrated by simulating the aeroacoustic properties of a two-element airfoil segment involving a leading-edge slat with changeable geometry.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Ph. Angot, C.-H. Bruneau, and P. Fabrie, “A penalization method to take into account obstacles in incompressible viscous flows,” Numer. Math. 81, 497–520 (1999).

    MathSciNet  Article  Google Scholar 

  2. G. Iaccarino and R. Verzicco, “Immersed boundary technique for turbulent flow simulation,” Appl. Mech. Rev. 56, 331–347 (2003).

    Article  Google Scholar 

  3. L. Mochel, P.-E. Weiss, and S. Deck, “Zonal immersed boundary conditions: application to a high-Reynolds-number afterbody flow,” AIAA J. 52 (12), 2782–2794 (2014).

    Article  Google Scholar 

  4. I. V. Abalakin, A. P. Duben, N. S. Zhdanova, and T. K. Kozubskaya, “Simulating an unsteady turbulent flow around a cylinder by the immersed boundary method,” Math. Models Comput. Simul. 11 (1), 74–85 (2019).

    MathSciNet  Article  Google Scholar 

  5. N. S. Zhdanova, A. V. Gorobets, and I. V. Abalakin, “Supercomputer simulations of fluid-structure interaction problems using an immersed boundary method,” Supercomput. Front. Innovations 5 (4), 78–82 (2018). https://doi.org/10.14529/jsfi1804

    Article  Google Scholar 

  6. A. P. Duben’, N. S. Zhdanova, and T. K. Kozubskaya, “Numerical investigation of the deflector effect on the aerodynamic and acoustic characteristics of turbulent cavity flow,” Fluid Dyn. 52 (4), 561–571 (2017).

    MathSciNet  Article  Google Scholar 

  7. V. A. Garanzha, L. N. Kudryavtseva, and S. V. Utyuzhnikov, “Variational method for untangling and optimization of spatial meshes,” J. Comput. Appl. Math. 269, 24–41 (2014). https://doi.org/10.1016/j.cam.2014.03.006

    MathSciNet  Article  MATH  Google Scholar 

  8. V. A. Garanzha and L. N. Kudryavtseva, “Hypoelastic stabilization of variational algorithm for construction of moving deforming meshes,” in Optimization and Applications OPTIMA 2018, Ed. by Evtushenko Y., et al., Communications in Computer and Information Science (Springer, 2018), Vol. 974, pp. 497–511. https://doi.org/10.1007/978-3-030-10934-9_35

  9. C. Mockett, M. Fuchs, A. Garbaruk, F. Thiele, M. Shur, M. Strelets, A. Travin, and P. Spalart, “Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES,” Notes Numer. Fluid Mech. 130, 187–201 (2015).

    Google Scholar 

  10. M. L. Shur, P. R. Spalart, M. Kh. Strelets, and A. K. Travin, “An enhanced version of DES with rapid transition from RANS to LES in separated flows,” Flow Turbul. Combust. 95 (4), 709–737 (2015). https://doi.org/10.1007/s10494-015-9618-0

    Article  Google Scholar 

  11. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper 92-0439 (1992). https://doi.org/10.2514/6.1992-439

  12. A. P. Duben, “Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes,” Math. Models Comput. Simul. 6 (2), 162–171 (2014).

    MathSciNet  Article  Google Scholar 

  13. V. A. Garanzha and L. N. Kudryavtseva, “Hypoelastic stabilization of variational algorithm for construction of moving deforming meshes” (Springer Nature Switzerland AG, 2019). https://doi.org/10.1007/978-3-030-10934-9_35

    Book  Google Scholar 

  14. I. V. Abalakin, T. K. Kozubskaya, S. A. Soukov, and N. S. Zhdanova, “Numerical simulation of flows over moving bodies of complex shapes using immersed boundary method on unstructured meshes,” Numerical Geometry, Grid Generation, and Scientific Computing: Proceedings of the 9th International Conference NUMGRID 2018/Voronoi 150 Celebrating the 150th Anniversary of G.F. Voronoi, Russia, December 2018, Ed. by V. Garanzha, L. Kamensky, and H. Si (Springer, Berlin, 2019), pp. 171–180.

  15. I. Abalakin, P. Bakhvalov, and T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes,” Int. J. Numer. Methods Fluids 81 (6), 331–356 (2016). https://doi.org/10.1002/fld.4187

    MathSciNet  Article  Google Scholar 

  16. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  17. M. Terracol, E. Manoha, and B. Lemoine, “Investigation of the unsteady flow and noise sources generation in a flap cove: Hybrid zonal RANS/LES simulation and dedicated experiment,” AIAA Paper 2011-3203 (2011). https://doi.org/10.2514/6.2011-3203

  18. E. Manoha, M. Terracol, B. Lemoine, I. Le Griffon, and T. Le Garrec, “Flap noise measurement and numerical prediction in the VALIANT program,” AIAA Paper 2012-2100 (2012). https://doi.org/10.2514/6.2012-2100

Download references

ACKNOWLEDGMENTS

This work was performed using computing resources of the federal collective use center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute,” http://ckp.nrcki.ru/.

Funding

This work was supported by the Russian Science Foundation, grant no. 16-11-10350.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Abalakin, N. S. Zhdanova or T. K. Kozubskaya.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abalakin, I.V., Duben, A.P., Zhdanova, N.S. et al. Immersed Boundary Method on Deformable Unstructured Meshes for Airfoil Aeroacoustic Simulation. Comput. Math. and Math. Phys. 59, 1982–1993 (2019). https://doi.org/10.1134/S0965542519120029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519120029

Keywords:

  • immersed boundary method
  • Brinkman penalization method
  • unstructured mesh
  • moving mesh
  • mesh deformation
  • LES approach
  • turbulent flow
  • airfoil
  • slat
  • aeroacoustics