Skip to main content
Log in

Soliton Solutions of a Generalization of the Coupled Volterra System

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The possibility of finding soliton solutions of a nonintegrable generalization of the coupled Volterra system is studied. This generalization is a system of two equations each of which includes terms that take into account the spatial dependence. At the first stage, the continual limit of the generalization is studied. At the second stage, soliton solutions for the continual limit are sought. At the third, final, step, soliton solutions of the nonintegrable generalization are sought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Volterra, “Fluctuations in the abundance of a species considered mathematically,” Nature 118, 558–560 (1926). https://doi.org/10.1038/118558a0

    Article  MATH  Google Scholar 

  2. V. Volterra, “Variazioni e fluttuazioni dei numero d’individui in specie animali conviventi,” Memorie della Regia Accademia Nazionale dei Lincei 2, 31–113 (1926). English translation in Animal Ecology, Ed. by R. N. Chapman (McGraw–Hill, New York, 1931).

    Google Scholar 

  3. V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie (Gauthier-Villars, Paris, 1931).

    MATH  Google Scholar 

  4. V. E. Zakharov, S. L. Musher, and A. M. Rubenchik, “Nonlinear stage of parametric wave excitation in a plasma,” Pis’ma Zh. Eksp. Teor. Fiz. 19, 249–253 (1974).

    Google Scholar 

  5. M. Wadati, “Transformation theories for nonlinear discrete systems,” Suppl. Progress Theor. Phys. No. 59, 36–63 (1976).

    Article  Google Scholar 

  6. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Problem Method (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  7. S. V. Manakov, “Complete integrability and stochastization of discrete dynamical systems,” Zh. Eksp. Teor. Fiz. 67, 543–555 (1974).

    MathSciNet  Google Scholar 

  8. M. Kac and P. van Moerbeke, “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices,” Adv. Math. 16, 160–169 (1975).

    Article  MathSciNet  Google Scholar 

  9. O. I. Bogoyavlenskii, Breaking Solitons and Nonlinear Integrable Equations (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  10. V. L. Vereshchagin, “Spectral theory of single-phase solutions of Volterra chain,” Mat. Zametki 48 (2), 145–148 (1990).

    MathSciNet  MATH  Google Scholar 

  11. L. A. Takhtadzhan and L. D. Fadeev, Hamiltonian Approach in the Theory of Solitons (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  12. P. A. Damianou, “The Volterra model and its relation to the Toda lattice,” Phys. Lett. A 155 (2–3), 126–132 (1991).

    Article  MathSciNet  Google Scholar 

  13. S. P. Popov, “Soliton solutions to generalized discrete Korteweg–de Vries equations,” Comput. Math. Math. Phys. 48, 1658–1668 (2008).

    Article  MathSciNet  Google Scholar 

  14. M. Iwasaki and Y. Nakamura, “On the convergence of a solution of the discrete Lotka–Volterra system,” Inverse Probl. 18, 1569–1578 (2002). https://doi.org/10.1088/0266-5611/18/6/309

    Article  MathSciNet  MATH  Google Scholar 

  15. D. L. Korteweg and G. de Vries, “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,” Phil. Mag. J. Sci., Ser. 5 39, 422–443 (1895), https://doi.org/10.1080/14786449508620739

    Article  MATH  Google Scholar 

  16. N. J. Zabusky and M. D. Kruskal, “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett. 15, 240–243 (1965).

    Article  Google Scholar 

  17. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–deVries equation,” Phys. Rev. Letts. 19, 1095–1097 (1967).

    Article  Google Scholar 

  18. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–134 (1971).

    Google Scholar 

  19. M. Wadati, “The exact solution of the modified Korteweg–de Vries equation,” J. Phys. Soc. Japan. 32, l681–1687 (1972).

    Google Scholar 

  20. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett. 30 (25), 1262–1264 (1973). https://doi.org/10.1103/PhysRevLett.30.1262

    Article  MathSciNet  Google Scholar 

  21. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Comm. Pure Appl. Math. 21, 467–490 (1968).

    Article  MathSciNet  Google Scholar 

  22. V. E. Zakharov and L. D. Faddeev, “Korteweg–de Vries equation: A completely integrable Hamiltonian system,” Funk. Anal, Prilozh. 5 (4), 18–27 (1971).

    Google Scholar 

  23. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform—Fourier analysis for nonlinear problems,” Studies Appl. Math. 53 (4), 249–315 (1974).

    Article  MathSciNet  Google Scholar 

  24. N. Lilitnfein, C. Hofer, M. Hogner, T. Saule, M. Trubetskov, V. Pervak, E. Fill, C. Riek, A. Leitenstorfer, J. Limpert, Krausz, and I. Pupeza, “Temporal solitons in free-space femtosecond enhancement cavities, Nature Photonics 13, 214–218 (2019). https://doi.org/10.1038/s41566-018-0341-y

    Article  Google Scholar 

  25. A. Degasperis, “Integrable models in nonlinear optics and soliton solutions,” J. Phys. A: Math. Theor. 43, 434001 (2010). https://doi.org/10.1088/1751-8113/43/434001

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Gustave, N. Radwell, C. McIntyre, J. P. Toomey, D. M. Kane, S. Barland, W. J. Firth, G.-L. Oppo, and T. Ackemann, “Observation of mode-locked spatial laser solitons,” Phys. Rev. Lett. 118 (4-27), 044102 (2017). https://doi.org/10.1103/PhysRevLett.118.044102

  27. J. Hang, C. Hahn, N. Statuto, F. Macià, and A. Kent, “Generation and annihilation time of magnetic droplet solitons,” Sci. Rep. 8, Article number: 6847 (2018). https://doi.org/10.1038/s41598-018-25134-z

    Article  Google Scholar 

  28. F. Macià, D. Backes, and A. D. Kent, “Stable magnetic droplet solitons in spin-transfer nanocontacts,” Nature Nanotechnol. 9, 992–996 (2014). https://doi.org/10.1038/nnano.2014.255

    Article  Google Scholar 

  29. I. Shomroni, E. Lahoud, S. Levy, and J. Steinhauer, “Evidence for an oscillating soliton/vortex ring by density engineering of a Bose–Einstein condensate,” Nature Phys. 5 (3), 193–197 (2009). https://doi.org/10.1038/nphys1177

    Article  Google Scholar 

  30. A. S. Fokas, “Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions,” Phys. Rev. Lett. 96 (19), 190201 (2006). https://doi.org/10.1103/PhysRevLett.96.190201

  31. B. Malomed, “Multidimensional solitons: Well-established results and novel findings,” Europ. Phys. J. Special Topics 225, 2507–2532 (2016). https://doi.org/10.1140/epjst/e2016-60025-y

    Article  Google Scholar 

  32. C. Oliver, F. Verheest, and S. Maharaj, “Small-amplitude supersolitons near supercritical plasma compositions,” J. Plasma Phys. 83 (4), 905830403 (2017). https://doi.org/10.1017/S0022377817000526

    Article  Google Scholar 

  33. E. G. Didenkulova, A. V. Kokorina, and A. V. Slyunyaev, “Numerical simulation of soliton gas within the Korteweg–de Vries equation,” Vychisl. Tekhnol. 24 (2), 52–66 (2019). https://doi.org/10.25743/ICT.2019.24.2.005

    Article  Google Scholar 

  34. B. F. Feng, K. Maruno, and Y. Ohta, “Integrable discretizations of the short pulse equation,” J. Phys. A: Math. Theor. 43 (8), 085203 (2010). https://doi.org/10.1088/1751-8113/43/8/085203

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Dimakis and F. Muller-Hoissen, “Bidifferential calculus approach to AKNS hierarchies and their solutions,” SIGMA 6, 27 (2010). https://doi.org/10.3842/SIGMA.2010.055

    Article  MathSciNet  MATH  Google Scholar 

  36. A. V. Yurov and A. A. Yurova, “On the relaionships between integrable hierarchies,” Vest. Balt. Fed. Univ., Ser. Fiz.-Mat. Tekhn. Nauki, No. 1, 48–53 (2017).

    Google Scholar 

  37. S. V. Popov, “Application of the quasi-spectral Fourier method to soliton equations,” Comput. Math. Math. Phys. 50, 2064–2070 (2010).

    Article  MathSciNet  Google Scholar 

  38. S. V. Popov, “Numerical study of peakons and k-solitons of the Camassa–Holm and Holm–Hone equations,” Comput. Math. Math. Phys. 51, 1231–1238 (2011).

    Article  Google Scholar 

  39. S. V. Popov, “Effect of cubic nonlinearity on soliton solutions of the Benjamin–Bona–Mahony equation,” Comput. Math. Math. Phys. 53, 477–485 (2013). https://doi.org/10.7868/S004446691304011X

    Article  MathSciNet  MATH  Google Scholar 

  40. S. V. Popov, “Numerical analysis of soliton solutions of the modified Korteweg–de Vries-Sine-Gordon Equation,” Comput. Math. Math. Phys. 55, 437–446 (2015). https://doi.org/10.7868/S004446691503014X

    Article  MathSciNet  MATH  Google Scholar 

  41. S. V. Popov, “Compacton solutions of the korteweg–de vries equation with constrained nonlinear dispersion,” Comput. Math. Math. Phys. 59, 150–159 (2019).  https://doi.org/10.1134/S0044466919010149

    Article  MathSciNet  MATH  Google Scholar 

  42. A. S. Fokas and Q. M. Liu, “Generalized conditional symmetries and exact solutions of non-integrable equations,” Teor. Mat. Fiz. 99 (2), 263–277 (1994).

    Article  MathSciNet  Google Scholar 

  43. A. A. Fedotov and M. V. Buslaeva, “On a two-soliton solution to a nonintegrable KdV equation,” Izv. S.-Peterb. Gos. Electrotekhn. Univ., No. 8, 20–25 (2011). http://www.eltech.ru/ru/universitet/izdatelstvo/izvestiya

  44. G. Perelman, “Two soliton collision for nonlinear Schrödinger equations in dimension 1,” Annales de l’Institut Henri Poincare (C) Non Linear Analysis 28, 357–384 (2011). https://doi.org/10.1016/j.anihpc.2011.02.002

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Martel and F. Merle, “Stability of two soliton collision for nonintegrable gKdV equations,” Commun. Math. Phys. 289(1), 39–79 (2009). https://doi.org/10.1007/s00220-008-0685-0

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Su, Y. Wang, N. Qin, J. Li, and G. Zhang, “Nonautonomous soliton solutions for a nonintegrable Korteweg–de Vries equation with variable coefficients by the variational approach,” Appl. Math. Lett. 90, 104–109 (2019). https://doi.org/10.1016/j.aml.2018.10.010

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Y. Lou, B. Tong, M. Jia, and J. Li, “A coupled Volterra system and its exact solutions.” arXiv:0711.0420v1

  48. H. Zhao and Z. Zhu, “Multi-soliton, multi-position, multi-negation, and multi-periodic solutions of the coupled Volterra lattice equation,” arXiv:0911.3458v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Bibik or S. P. Popov.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibik, Y.V., Popov, S.P. Soliton Solutions of a Generalization of the Coupled Volterra System. Comput. Math. and Math. Phys. 59, 1806–1815 (2019). https://doi.org/10.1134/S0965542519110034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519110034

Keywords:

Navigation