Skip to main content
Log in

Estimation of the Distance between True and Numerical Solutions

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Given an ensemble of numerical solutions generated by different algorithms that are guaranteed to have different errors, the triangle inequality is used to find a neighborhood of a numerical solution that contains the true one. By analyzing the distances between the numerical solutions, the latter can be ranged according to their error magnitudes. Numerical tests for the two-dimensional compressible Euler equations demonstrate the possibility of comparing the errors of different methods and determining a domain containing the true solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. K. Alekseev and A. E. Bondarev, “On localization of the true solution on an ensemble of computations,” Abstracts of Papers of the 20th International Conference on Computational Mechanics and Modern Software Application Systems, Alushta, May 24–31, 2017 (Mosk. Aviats. Inst., Moscow, 2017), pp. 357–359.

  2. A. K. Alekseev, A. E. Bondarev, and I. M. Navon, “On estimation of discretization error norm via ensemble of approximate solutions,” arXiv:1704.04994 [physics.comp-ph]. April 18, 2017.

  3. A. K. Alexeev and A. E. Bondarev, “On exact solution enclosure on ensemble of numerical simulations,” Math. Montisnigri 38, 63–77 (2017).

    MathSciNet  Google Scholar 

  4. D. Burago, Yu. D. Burago, and S. Ivanov, A Course in Metric Geometry (Am. Math. Soc., Providence, R.I., 2001).

    Book  MATH  Google Scholar 

  5. L. Wang, Y. Zhang, and J. Feng, “On the Euclidean distance of images,” IEEE Trans. Pattern Anal. Mach. Intell. 27 (8), 1334–1339 (2005).

    Article  Google Scholar 

  6. P. Ch. Mahalanobis, “On the generalized distance in statistics,” Proc. Natl. Inst. Sci. India 2 (1), 49–55 (1936).

    MATH  Google Scholar 

  7. V. Ya. Borovoi, Gas Flow and Heat Transfer in Shock Wave-Boundary Layer Interaction Zones (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

  8. R. Courant, E. Isaacson, and M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences,” Commun. Pure Appl. Math. 5, 243–255 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001).

  10. B. van Leer, “Towards the ultimate conservative difference scheme: V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32, 101–136 (1979).

    Article  MATH  Google Scholar 

  11. M. Sun and K. Katayama, “An artificially upstream flux vector splitting for the Euler equations,” J. Comput. Phys. 189, 305–329 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Osher and S. Chakravarthy, “Very high order accurate TVD schemes,” ICASE Report, No. 84-144, 229–274 (1984).

  13. C.-T. Lin, et al., “High resolution finite volume scheme for the quantum hydrodynamic equations,” J. Comput. Phys. 228 (5), 1713–1732 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Yamamoto and H. Daiguji, “Higher-order-accurate upwind schemes for solving the compressible Euler and Navier–Stokes equations,” Comput. Fluids 22, 259–270 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. I. Repin, A Posteriori Estimates for Partial Differential Equations (Walter de Gruyter, Berlin, 2008), Vol. 4.

    Book  MATH  Google Scholar 

  16. G. I. Marchuk and V. V. Shaidurov, Improvement of the Accuracy of Solutions to Difference Schemes (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research, projects no. 17-01-444A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Alekseev or A. E. Bondarev.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.K., Bondarev, A.E. Estimation of the Distance between True and Numerical Solutions. Comput. Math. and Math. Phys. 59, 857–863 (2019). https://doi.org/10.1134/S0965542519060034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519060034

Keywords:

Navigation