Skip to main content
Log in

Inverse Problem of Finding the Coefficient of the Lowest Term in Two-Dimensional Heat Equation with Ionkin-Type Boundary Condition

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total energy integral overdetermination condition. The global well-posedness of the problem is obtained by generalized Fourier method combined with the unique solvability of the second kind Volterra integral equation. For obtaining a numerical solution of the inverse problem, we propose the discretization method from a new combination. On the one hand, it is known the traditional method of uniform finite difference combined with numerical integration on a uniform grid (trapezoidal and Simpson’s), on the other hand, we give the method of non-uniform finite difference is combined by a numerical integration on a non-uniform grid (with Gauss–Lobatto nodes). Numerical examples illustrate how to implement the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. V. Isakov, Inverse Problems for Partial Differential Equations (Springer, Berlin, 1998).

    Book  MATH  Google Scholar 

  2. M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Am. Math. Soc., Providence, R.I., 1986).

  3. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics (Marcel Dekker, New York, 2000).

    MATH  Google Scholar 

  4. T. I. Bukharova and V. L. Kamynin, “Inverse problem of determining the absorption coefficient in the multidimensional heat equation with unlimited minor coefficients,” Comput. Math. Math. Phys. 55 (7), 1164–1176 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. R. Cannon and Y. Lin, “Determination of parameter p(t) in Hölder classes for some semilinear parabolic equations,” Inverse Probl. 4, 595–606 (1988).

    Article  MATH  Google Scholar 

  6. J. R. Cannon and Y. Lin, “Determination of a parameter p(t) in some quasi-linear parabolic differential equations,” Inverse Probl. 4, 35–45 (1988).

    Article  MATH  Google Scholar 

  7. J. R. Cannon, Y. Lin, and S. Xu, “Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations,” Inverse Probl. 10, 227–243 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. L. Kamynin, “The inverse problem of the simultaneous determination of the right-hand side and the lowest coefficient in parabolic equations with many space variables,” Math. Notes 97 (3), 349–361 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Choulli, “An inverse problem for a semilinear parabolic equation,” Inverse Probl. 10, 1123–1132 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. L. Kamynin, “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation,” Mathematical Notes 94 (2), 205–213 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. B. Kostin, “Inverse problem of finding the coefficient of u in a parabolic equation on the basis of a nonlocal observation condition,” Differ. Equations 51 (5), 605–619 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. I. Kozhanov, “An inverse problem with an unknown coefficient and right-hand side for a parabolic equation II,” J. Inv. Ill-Posed Probl. 11 (5), 505–522 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. I. Kozhanov, “Parabolic equations with an unknown absorption coefficient,” Dokl. Math. 74 (1), 573–576 (2006).

    Article  MATH  Google Scholar 

  14. A. I. Kozhanov, “On solvability of an inverse problem with an unknown coefficient and right-hand side for a parabolic equation,” J. Inv. Ill-Posed Problems 10 (6), 611–627 (2002).

    MathSciNet  MATH  Google Scholar 

  15. A. I. Prilepko and V. V. Solov’ev, “On the solvability of inverse boundary value problems for the determination of the coefficient preceding the lower derivative in a parabolic equation,” Differ. Uravn. 23 (1), 136–143 (1987).

    MathSciNet  Google Scholar 

  16. A. I. Kozhanov, “Nonlinear loaded equations and inverse problems,” Comput. Math. Math. Phys. Fiz. 44 (4), 657–678 (2004).

    MathSciNet  MATH  Google Scholar 

  17. A. I. Prilepko and A. B. Kostin, “On inverse problems of determining a coefficient in a parabolic equation II,” Sib. Mat. Zh. 34 (5), 147–162 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. G. Pyatkov, “Solvability of some inverse problems for parabolic equations,” J. Inv. Ill-Posed Problems 12 (4), 397–412 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. V. Bicadze and A. A. Samarskii, “Some elementary generalizations of linear elliptic boundary value problems,” Dokl. Akad. Nauk SSSR 185, 739–740 (1969).

    MathSciNet  Google Scholar 

  20. O. M. Alifanov, Inverse Heat Transfer Problems (Springer, 2011).

    Google Scholar 

  21. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (De Gruyter, Berlin, 2007).

    Book  MATH  Google Scholar 

  22. A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation (Elsevier, Amsterdam, 1987).

    MATH  Google Scholar 

  23. C. R. Vogel, Computational Methods for Inverse Problems (Soc. Ind. Appl. Math., Philadelphia, PA, 2002).

    Book  MATH  Google Scholar 

  24. D. S. Daoud and D. Subasi, “A splitting up algorithm for the determination of the control parameter in multi-dimensional parabolic problem,” Appl. Math. Comput. 166, 584–595 (2005).

    MathSciNet  MATH  Google Scholar 

  25. M. Dehghan, “Numerical methods for two-dimensional parabolic inverse problem with energy overspecification,” Int. J. Comput. Math. 77 (3), 441–455 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  26. P. N. Vabishchevich and V. I. Vasil’ev, “Numerical identification of the lowest coefficient of a parabolic equation,” Dokl. Math. 89 (2), 179–181 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  27. F. S. V. Bazan, L. Bedin, and L. S. Borges, “Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem,” Comput. Phys. Commun. 214, 18–30 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Bedin and F. S. V. Bazan, “On the 2D bioheat equation with convective boundary conditions and its numerical realization via a highly accurate approach,” Appl. Math. Comput. 236, 422–436 (2014).

    MathSciNet  MATH  Google Scholar 

  29. N. I. Ionkin, “Solution of a boundary-value problem in heat conduction with a non-classical boundary condition,” Differ. Equations 13, 294–304 (1977).

    MathSciNet  Google Scholar 

  30. N. I. Ionkin and V. A. Morozova, “The two-dimensional heat equation with nonlocal boundary conditions,” Differ. Equations 36 (7), 982–987 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. R. Cannon, Y. P. Lin, and S. Wang, “Determination of a control parameter in a parabolic partial differential equation,” J. Austral. Math. Soc. Ser. B 33 (2), 149–163 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  32. M. I. Ivanchov and N. V. Pabyrivs’ka, “Simultaneous determination of two coefficients of a parabolic equation in the case of nonlocal and integral conditions,” Ukr. Math. J. 53 (5), 674–684 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  33. M. K. Bowen and R. Smith, “Derivative formulas and errors for non-uniformly spaced points,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 461 (2059), 1975–1997 (2005).

  34. A. V. Gulin, N. I. Ionkin, and V. A. Morozova, “Stability of a nonlocal two-dimensional finite-difference problem,” Differ. Equations 37 (7), 970–978 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. I. Ismailov and F. Kanca, “An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditions,” Math. Methods Appl. Sci. 34, 692–702 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  36. V. A. Il’in, “On the absolute and uniform convergence of the expansions in eigen- and associated functions of a non-self-adjoint elliptic operator,” Dokl. Akad. Nauk SSSR 274 (1), 19–22 (1984).

    MathSciNet  Google Scholar 

  37. M. Abramowitz and A. Stegun, Handbook of Mathematical Functions (Dover, Mineola, NY, 1965).

    MATH  Google Scholar 

  38. N. B. Kerimov and M. I. Ismailov, “Direct and inverse problems for the heat equation with a dynamic-type boundary condition,” IMA J. Appl. Math. 80 (5), 1519–1533 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  39. S. S. Dragomir, Some Gronwall Type Inequalities and Applications (RGMIA Monographs, Victoria Univ., Australia, 2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Ismailov or S. Erkovan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismailov, M.I., Erkovan, S. Inverse Problem of Finding the Coefficient of the Lowest Term in Two-Dimensional Heat Equation with Ionkin-Type Boundary Condition. Comput. Math. and Math. Phys. 59, 791–808 (2019). https://doi.org/10.1134/S0965542519050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519050087

Keywords:

Navigation