Skip to main content
Log in

Mathematical Simulation of Viscous Gas Flows between Two Coaxially Rotating Concentric Cylinders and Spheres

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A technique for constructing conservative Godunov-type finite-difference schemes for computing viscous gas flows in cylindrical and spherical coordinates is described. Two- and three-dimensional flows in the gap between two coaxially rotating concentric cylinders and spheres are computed. Various types of vortex flows are simulated, which are also typical for an incompressible fluid. The differences from the incompressible case are noted. The results show that cylindrical and spherical Couette flows can be studied within the framework of the mathematical viscous gas model by applying direct numerical simulation with the use of explicit finite-difference schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. C.-C. Lin, The Theory of Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 1955).

    MATH  Google Scholar 

  2. D. D. Joseph, Stability of Fluid Motions I (Springer-Verlag, New York, 1976).

    MATH  Google Scholar 

  3. R. C. DiPrima and J. T. Stuart, “Hydrodynamic stability,” J. Appl. Mech. 50 (4b), 983–991 (1983).

    Article  MathSciNet  Google Scholar 

  4. P. G. Drazin, Introduction to Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 2002).

    Book  MATH  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).

  6. N. E. Kochin, I. A. Kibel, and N. V. Roze, Theoretical Hydromechanics (Fizmatgiz, Moscow, 1963; Interscience, New York, 1965), Vol. 2.

  7. G. I. Taylor, “Stability of a viscous liquid contained between two rotating cylinders,” Philos. Trans. R. Soc. A 223, 289–343 (1923).

    Article  MATH  Google Scholar 

  8. J. L. Synge, “On stability of viscous liquid between two rotating coaxial cylinders,” Proc. R. Soc. A 167, 250–256 (1938).

    MATH  Google Scholar 

  9. I. M. Yavorskaya and K. M. Astaf’eva, Preprint IKI AN SSSR No. Pr-06-10 (Space Research Institute, USSR Academy of Sciences, Moscow, 1974).

    Google Scholar 

  10. A. A. Monakhov, “Stability limit of the basic flow in spherical layers,” Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 4, 66–70 (1996).

  11. M. V. Abakumov, “Method for the construction of Godunov-type difference schemes in curvilinear coordinates and its application to cylindrical coordinates,” Comput. Math. Model. 25 (3), 315–333 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. V. Abakumov, “Construction of Godunov-type difference schemes in curvilinear coordinates and an application to spherical coordinates,” Comput. Math. Model. 26 (2), 184–203 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Stewartson, “On almost rigid rotations 2,” J. Fluid Mech. 26 (1), 131–144 (1966).

    Article  MATH  Google Scholar 

  14. I. Proudman, “The almost-rigid rotation of viscous fluid between concentric spheres,” J. Fluid Mech. 1 (5), 505–516 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. E. Kochin, Vector Calculus and Elements of Tensor Calculus (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  16. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  17. S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,” Mat. Sb. 47 (3), 271–306 (1959).

    MathSciNet  MATH  Google Scholar 

  18. S. K. Godunov, A. V. Zabrodin, and G. P. Prokopov, “A computational scheme for two-dimensional nonstationary problems of gas dynamics and calculation of the flow from a shock wave approaching a stationary state,” USSR Comput. Math. Math. Phys. 1 (4), 1187–1219 (1962).

    Article  MATH  Google Scholar 

  19. P. L. Roe, “Characteristic-based schemes for the Euler equations,” Ann. Rev. Fluid Mech. 18 (1), 337–365 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Einfeldt, “On Godunov-type methods for gas dynamics,” SIAM J. Numer. Anal. 25 (2), 294–318 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. R. Chakravarthy and S. Osher, “A new class of high accuracy TVD schemes for hyperbolic conservation laws,” 23rd Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (1985), pp. 1–11.

  22. D. Yu. Zhilenko, O. E. Krivonosova, and N. V. Nikitin, “Development of three-dimensional flow structures in the laminar–turbulent transition in a wide spherical layer,” Phys. Dokl. 52 (5), 39–43 (2007).

    MATH  Google Scholar 

  23. V. W. Ekman, “On the influence of the Earth’s rotation on ocean currents,” Ark. Mat. Astron. Fys. 2 (11), 1–52 (1905).

    MATH  Google Scholar 

  24. C. Gissinger, H. Ji, and J. Goodman, “Instabilities in magnetized spherical Couette flow,” Phys. Rev. 84 (2), 1–10 (2011).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am immensely grateful to my teacher, the late Corresponding Member of the RAS Yu.P. Popov, who initiated this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Abakumov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abakumov, M.V. Mathematical Simulation of Viscous Gas Flows between Two Coaxially Rotating Concentric Cylinders and Spheres. Comput. Math. and Math. Phys. 59, 384–401 (2019). https://doi.org/10.1134/S0965542519030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519030023

Keywords:

Navigation