Skip to main content
Log in

Simulating Flows of Viscous Incompressible Fluid on Graphics Processors Using the Splitting Scheme and Multigrid Method

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The use of general purpose graphics processors for the numerical solution of problems in dynamics of viscous incompressible fluid is discussed. Specific features of the parallel implementation of the splitting scheme (projection method) are considered. The system of difference equations produced by the discretization of Poisson’s equations for pressure is solved using the multigrid method. A number of benchmark problems are solved on graphics processors, and approaches to the optimization of program code by using different memory types are discussed. The speedup of computations on graphics processors is compared with the computations on the central processor using grids with different resolution and different decompositions of the initial data into blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J. Purcel, “A survey of general-purpose computation on graphics hardware,” Comput. Graphics Forum 26, 80–113 (2007).

    Article  Google Scholar 

  2. A. V. Boreskov and A. Kharlamov, Basics of CUDA Technology (DMK, Moscow, 2010) [in Russian].

    Google Scholar 

  3. J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming (Addison-Wesley, Upper Saddle River, 2010).

    Google Scholar 

  4. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. G. Karpenko, A. S. Kozelkov, and I. V. Teterina, Acceleration of Fluid Dynamics Computations on Unstructured Grids (Fizmatlit, Moscow, 2014).

    Google Scholar 

  5. A. V. Gorobets, S. A. Sukov, A. O. Zheleznyakov, P. B. Bogdanov, and B. N. Chetverushkin, “Using GPUs for hybrid two-level parallelization MPI+OpenMP on heterogeneous computer systems,” in Parallel Computational Technologies (Yuzhnoural’skii Gos Univ., Chelyabinsk, 2011), pp. 452–460.

    Google Scholar 

  6. K. N. Volkov, V. N. Emel’yanov, A. G. Karpenko, P. G. Smirnov, and I. V. Teterina, “Imlementation of the finite volume method and computation of flows of viscous compressible fluid on graphics processors,” Vychisl Meth. Program. 14 (1), 183–194 (2013).

    Google Scholar 

  7. A. Corrigan, F. Camelli, R. Lőhner, and J. Wallin, “Running unstructured grid-based CFD solvers on modern graphics hardware,” AIAA Paper No. 2009-4001 (2009).

  8. I. C. Kampolis, X. S. Trompoukis, V. G. Asouti, and K. C. Giannakoglou, “D-based analysis and two-level aerodynamic optimization on graphics processing units,” Comput. Meth. Appl, Mech. Eng. 199, 712–722 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Fu, Z. Gao, K. Xu, and F. Xu, “A multi-block viscous flow solver based on GPU parallel methodology,” Comput. Fluids 95, 19–39 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Krotkiewski and M. Dabrowski, “Efficient 3D stencil computations using CUDA,” Parallel Comput. 39, 533–548 (2013).

    Article  MathSciNet  Google Scholar 

  11. J. Meng and K. Skadron, “A performance study for iterative stencil loops on GPUs with ghost zone optimizations,” Int. J. Parallel Program. 39 (1), 115–142 (2011).

    Article  Google Scholar 

  12. D. A. Jacobsen and I. Senocak, “Multi-level parallelism for incompressible flow computations on GPU clusters,” Parallel Comput. 39, 1–20 (2013).

    Article  MathSciNet  Google Scholar 

  13. M. Tuttafesta, G. Colonna, and G. Pascazio, “Computing unsteady compressible flows using Roe’s flux-difference splitting scheme on GPUs,” Comput. Phys. Commun. 194, 1497–1510 (2013).

    Article  MATH  Google Scholar 

  14. A. J. Chorin, “Numerical solution of Navier–Stokes equations,” Math. Comput. 22, 745–762 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  15. O. M. Belotserkovskii, Numerical Simulation in Fluid Continuum Mechanics (Fizmatlit, Moscow, 1994) [in Russian].

    MATH  Google Scholar 

  16. K. N. Volkov, “An implementation of the splitting scheme on a staggered grid for computing unsteady flows of viscous incompressible fluid,” Vychisl. Metody Program. 6 (1), 269–282 (2005).

    Google Scholar 

  17. J. C. Thibault and I. Senocak, “CUDA implementation of a Navier–Stokes solver on multi-GPU desktop platforms for incompressible flows,” AIAA Paper., No. 2009-758 (2009).

  18. K. N. Volkov and V. N. Emel’yanov, Simulation of Large-Scale Vortices in the Computations of Turbulent Flows (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  19. Controlling Flows around Bodies with Vorticity Cells as Applied to Flying Vehicles of Integrated Configuration (Numerical Simulation and Physical Modeling), Ed. by A. V. Ermishin and S. A. Isaev (Mosc. Gos. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  20. K. N. Volkov, V. N. Emel’yanov, I. V. Teterina, and M. S. Yakovchuk, “Visualization of vortical flows in computational fluid dynamics,” Comput. Math. Math. Phys., 57, 1360–1375 (2017).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project nos. 13-07-12079 and 16-38-60142. The work by A.G. Karpenko was supported by the Russian Foundation for Basic Research, project no. 16-38-60142.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. N. Volkov or A. G. Karpenko.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, K.N., Emel’yanov, V.N., Karpenko, A.G. et al. Simulating Flows of Viscous Incompressible Fluid on Graphics Processors Using the Splitting Scheme and Multigrid Method. Comput. Math. and Math. Phys. 59, 136–149 (2019). https://doi.org/10.1134/S0965542519010160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519010160

Keywords:

Navigation