Skip to main content
Log in

Compacton Solutions of the Korteweg–de Vries Equation with Constrained Nonlinear Dispersion

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The numerical solution of initial value problems is used to obtain compacton and kovaton solutions of K(m, g n) equations generalizing the Korteweg–de Vries K(u2, u1) and Rosenau–Hyman K(u m, u n) equations to more general dependences of the nonlinear and dispersion terms on the solution u. The functions f(u) and g(u) determining their form can be linear or can have the form of a smoothed step. It is shown that peakocompacton and peakosoliton solutions exist depending on the form of the nonlinearity and dispersion. They represent transient forms combining the properties of solitons, compactons, and peakons. It is shown that these solutions can exist against an inhomogeneous and nonstationary background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. K. Dodd, J. C. Eilbeck, J. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1982).

    MATH  Google Scholar 

  2. V. I. Petviashvii and O. A. Pokhotelov, Solitary Waves in Plasmas and the Atmosphere (Energoatomizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  3. V. G. Makhan’kov, “Solitons and numerical experiment,” Sov. J. Part. Nucl. 14, 50–75 (1983).

    MathSciNet  Google Scholar 

  4. T. I. Belova and A. E. Kudryavtsev, “Solitons and their interactions in classical field theory,” Usp. Fiz. Nauk 167 (4), 377–406 (1997).

    Article  Google Scholar 

  5. V. E. Zakharov, “On the stochastization of one-dimensional chains of nonlinear oscillators,” Zh. Eksp. Teor. Fiz. 65 (1(7)), 219–225 (1973).

    Google Scholar 

  6. E. G. Ekomazov, R. R. Murtazin, O. B. Bogomazova, and A. M. Gumerov, “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange,” J. Magn. Magn. Mater. 339, 133–137 (2013).

    Article  Google Scholar 

  7. M. A. Shamsutdinov, D. M. Shamsutdinov, and E. G. Ekomasov, " “Dynamics of domain walls in orthorhombic antiferromagnets near the critical velocity,” Phys. Metals Metallogr. 96 (4), 361–367 (2003).

    Google Scholar 

  8. H. Leblond and D. Mihalache, “Optical solitons in the few-cycle regime: Recent theoretical results,” Romanian Rep. Phys. 63, 1254–1266 (2011).

    Google Scholar 

  9. R. Camassa and D. Holm, “An integrable shallow water equation with peaked soliton,” Phys. Rev. Lett. 71, 1661–1664 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Rosenau and J. M. Hyman, “Compactons: Solitons with finite wavelengths,” Phys. Rev. Lett. 70 (5), 564–567 (1993).

    Article  MATH  Google Scholar 

  11. F. Cooper, J. M. Hyman, and A. Khare, “Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations,” Phys. Rev. E 64 (2), 1–5 (2001).

    Article  Google Scholar 

  12. P. Rosenau and D. Levy, “Compactons in a class of nonlinearly quintic equations,” Phys. Lett. A 252, 297–306 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Rosenau, “Nonlinear dispersion and compact structures,” Phys. Rev. Lett. 73 (13), 1737–1741 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Rosenau, “On nonanalytic solitary waves formed by a nonlinear dispersion,” Phys. Lett. A 230 (5–6), 305–318 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Rosenau, “On a class of nonlinear dispersive-dissipative interactions,” Physica D 230 (5–6), 535–546 (1998).

    MathSciNet  MATH  Google Scholar 

  16. P. Rosenau, “Compact and noncompact dispersive structures,” Phys. Lett. A 275 (3), 193–203 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Garralón and F. R. Villatoro, “Numerical evaluation of compactons and kovatons of the K(cos) Rosenau–Pikovsky equation,” Math. Comput. Model. 55 (7–8), 1858–1865 (2012).

    Article  MATH  Google Scholar 

  18. J. Garralón, F. Rus, and F. R. Villatoro, “Numerical interactions between compactons and kovatons of the Rosenau–Pikovsky K(cos) equation,” Commun. Nonlinear Sci. Numer. Simul. 18 (7), 1576–1588 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. de Frutos, M. A. López-Marcos, and J. M. Sanz-Serna, “A finite difference scheme for the K(2, 2) compacton equation,” J. Comput. Phys. 120 (2), 248–252 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Saucez, A. Vande Wouwer, and P. A. Zegeling, “Adaptive method of lines solutions for the extended fifth-order Korteweg–de Vries,” J. Comput. Appl. Math. 183 (2), 343–357 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Rus and F. R. Villatoro, “Padé numerical method for the Rosenau–Hyman compacton equation,” Math. Comput. Simul. 76 (1), 188–192 (2007).

    Article  MATH  Google Scholar 

  22. J. Garralón, F. Rus, and F. R. Villatoro, “Removing trailing tails and delays induced by artificial dissipation in Padé numerical schemes for stable compacton collisions,” Appl. Math. Comput. 220, 185–192 (2013).

    MathSciNet  MATH  Google Scholar 

  23. A. Chertock and D. Levy, “Particle methods for dispersive equations,” J. Comput. Phys. 171 (2), 708–730 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. M. Sanz-Serna and I. Christie, “Petrov–Galerkin methods for nonlinear dispersive waves,” J. Comput. Phys. 39 (1), 94–102 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Levy, C.-W. Shu, and J. Yan, “Local discontinuous Galerkin methods for nonlinear dispersive equations,” J. Comput. Phys. 196 (2), 751–772 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Rus and F. Villatoro, “Radiation in numerical compactons from finite element methods,” Proceedings of the 8th WSEAS International Conference on Applied Mathematics, Tenerife, Spain, December 16–18, 2005, pp. 19–24.

  27. S. P. Popov, “Application of the quasi-spectral Fourier method to soliton equations,” Comput. Math. Math. Phys. 50 (12), 2064–2070 (2010).

    Article  MathSciNet  Google Scholar 

  28. S. P. Popov, “Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation,” Comput. Math. Math. Phys. 55 (3), 437–446 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. P. Popov, “Numerical study of peakons and k-solitons of the Camassa–Holm and Holm–Hone equation,” Comput. Math. Math. Phys. 51 (7), 1231–1238 (2011).

    Article  MATH  Google Scholar 

  30. C. Rasinariu, U. Sukhatme, and A. Khare, “Negaton and positon solutions of the KdV and MKdV hierarchy,” J. Phys. A: Math. Gen. 29 (8), 1803–1823 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Popov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, S.P. Compacton Solutions of the Korteweg–de Vries Equation with Constrained Nonlinear Dispersion. Comput. Math. and Math. Phys. 59, 150–159 (2019). https://doi.org/10.1134/S0965542519010147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519010147

Keywords:

Navigation