Skip to main content
Log in

On Error Control in the Numerical Solution of Reaction–Diffusion Equation

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A novel method for deriving a posteriori error bounds for approximate solutions of reaction–diffusion equations is proposed. As a model problem, the problem \( - \Delta u + \sigma u = f\) in \(\Omega \), \({{\left. u \right|}_{{\partial \Omega }}} = 0\) with an arbitrary constant reaction coefficient \(\sigma \geqslant 0\) is studied. For the solutions obtained by the finite element method, bounds, which are called consistent for brevity, are proved. The order of accuracy of these bounds is the same as the order of accuracy of unimprovable a priori bounds. The consistency also assumes that the order of accuracy of such bounds is ensured by test fluxes that satisfy only the corresponding approximation requirements but are not required to satisfy the balance equations. The range of practical applicability of consistent a posteriori error bounds is very wide because the test fluxes appearing in these bounds can be calculated using numerous flux recovery procedures that were intensively developed for error indicators of the residual method. Such recovery procedures often ensure not only the standard approximation orders but also the superconvergency of the recovered fluxes. The advantages of the proposed family of a posteriori bounds are their guaranteed sharpness, no need for satisfying the balance equations in flux recovery procedures, and a much wider range of efficient applicability compared with other a posteriori bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. C. Zienkiewicz and J. Z. Zhu, “The superconvergence patch recovery (SPR) and adaptive finite element refinement,” Comput. Meth. Appl. Mech. Eng. 101, 207–224 (1992).

    Article  MATH  Google Scholar 

  2. M. Ainsworth and J. T. Oden, A Posteriori Estimation in Finite Element Analysis (Wiley, New York, 2000).

    Book  MATH  Google Scholar 

  3. I. Babuska and T. Strouboulis, Finite Element Method and Its Reliability (Oxford Univ. Press, New York, 2001).

    MATH  Google Scholar 

  4. I. Babuska, J. R. Witeman, and T. Strouboulis, Finite Elements: An Introduction to the Method and Error Estimation (Oxford Univ. Press, Oxford, 2011).

    Google Scholar 

  5. A. Ern, A. Stephansen, and M. Vohralik, “Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems,” J. Comput. Appl. Math. 234, 114–130 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Cheddadi, R. Fučík, M. I. Prieto, and M. Vohralik, “Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems, ESAIM: Math. Model. Numer. Anal. 43, 867–888 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Cai and S. Zhang, “Flux recovery and a posteriori error estimators: conforming elements for scalar elliptic equations,” SIAM J. Numer. Anal. 48, 578–602 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Ainsworth and T. Vejchodský, “Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension,” arXiv:1401.2394v2 math.NA., 2015.

  9. M. Ainsworth and T. Vejchodský, “Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems,” Numer. Math. 119, 219–243 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. G. Korneev, “Robust consistent a posteriori error majorants for approximate solutions of reaction–diffusion equations,” Proc. of the 11th Int. Conf. on Mesh Methods for Boundary Value Problems and Applications (Kazan Univ., Kazan, 2016), pp. 182–187.

  11. V. G. Korneev, “Robust consistent a posteriori error majorants for approximate solutions of diffusion–reaction equations,” arXiv:1702.00433v1 math.NA., 2017.

  12. V. G. Korneev, “On the accuracy of a posteriori functional error majorants for approximate solutions of elliptic equations,” Dokl. Math. 96, 380–383 (2017).

  13. J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems (Wiley Interscience, New York, 1972).

    MATH  Google Scholar 

  14. L. Scott and S. Zhang, “Finite element interpolation of nonsmooth functions satisfying boundary conditions,” Math. Comput. 54, 483–493 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. A. Cottrell, J. R. Hughes, and Yu. Bazilevs, Isogeometric Analysis. Toward Integration of CAD and FEA (Wiley, New York, 2009).

    Book  MATH  Google Scholar 

  16. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements (Springer, Berlin, 2004).

    Book  MATH  Google Scholar 

  17. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Springer, New York, 1985).

    Book  MATH  Google Scholar 

  18. V. G. Korneev and U. Langer, Dirichlet-Dirichlet Domain Decomposition Methods for Elliptic Problems, h and hp Finite Element Discretizations (World Scientific, New Jesey, 2015).

  19. S. I. Repin and M. E. Frolov, “A posteriori error estimates for approximate solutions to elliptic boundary value problems,” Comput. Math. Math. Phys. 42, 1704–1716 (2002).

    MathSciNet  Google Scholar 

  20. S. G. Mikhlin, Variational Methods in Mathematical Physics (Pergamon Press, Oxford, 1964).

    MATH  Google Scholar 

  21. I. E. Anufriev, V. G. Korneev, and V. S. Kostylev, “Exactly equilibrated fields, can they be efficiently used for a posteriori error estimation?” Uchen. Zap. Kazan Univ., Ser. Fiz.-Mat. Nauki 148 (4), 94–143 (2006).

    MATH  Google Scholar 

  22. V. G. Korneev, “Simple algorithms for finding a posteriori errors of numerical solutions to elliptic equations,” Uchen. Zap. Kazan Univ., Ser. Fiz.-Mat. Nauki 154 (4), 11–27 (2011).

    Google Scholar 

  23. S. Repin and S. Sauter, “Functional a posteriori estimates for the reaction-diffusion problem,” Compte Rendu Math. Acad. Sci. Paris 343, 349–354 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. A. Churilova, “Computational properties of a posteriori functional estimates for the stationary reaction–diffusion problem,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 1 (1), 68–78 (2014).

    Google Scholar 

  25. L. A. Oganesyan and L. A. Rukhovets, Variational-Difference Methods for Solving Elliptic Equations (Akad. Nauk Arm. SSR, Erevan, 1979) [in Russian].

    MATH  Google Scholar 

  26. A. I. Nazarov and S. V. Poborchii, Poincaré Inequality and Its Applications (St. Petersburg Gos. Univ., St. Peterburg, 2012) [in Russian].

    Google Scholar 

  27. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations (Academic, New York, 1968).

    MATH  Google Scholar 

  28. J. Xu and J. Zou, “Some nonoverlapping domain decomposition methods,” SIAM Review. 40, 857–914 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. H. Bramble and J. Xu, “Some estimates for a weighted \({{L}_{2}}\) projection,” Math. Comput. 56, 463–476 (1991).

    MathSciNet  MATH  Google Scholar 

  30. Ph. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1977).

    Google Scholar 

  31. V. G. Korneev, High-Order Schemes of the Finite Element Method (Leningr. Gos. Univ, Leningrad, 1977) [in Russian].

    MATH  Google Scholar 

  32. E. Creusé and S. Nicaise, “A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods,” J. Comput. Appl. Math. 234, 2903–2915 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Carey and G. G. Carey, “Flexible patch post-processing recovery strategies for solution enhancement and adaptive mesh refinement,” Int. J. Numer. Meth. Eng. 87 (1–5), 424–436 (2011).

    Article  MATH  Google Scholar 

  34. C. E. Carstensen and C. Merdon, “Effective postprocessing for equilibration a posteriori error estimators,” Numer. Math. 123, 425–459 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGEMENTS

I am grateful to the reviewer for useful advice that helped improve the presentation and eliminate errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Korneev.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneev, V.G. On Error Control in the Numerical Solution of Reaction–Diffusion Equation. Comput. Math. and Math. Phys. 59, 1–18 (2019). https://doi.org/10.1134/S0965542519010123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519010123

Keywords:

Navigation