Skip to main content
Log in

Solution of a Boundary Value Problem for Velocity-Linearized Navier–Stokes Equations in the Case of a Heated Spherical Solid Particle Settling in Fluid

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Assuming that the fluid viscosity is an exponential-power function of temperature, a boundary value problem for the Navier–Stokes equations linearized with respect to velocity is solved and the uniqueness of the solution is proved. The problem of a nonuniformly heated spherical solid particle settling in fluid is considered as an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Selim, M. A. Hossain, and D. A. S. Rees, “The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis,” Int. J. Thermal Sci. 42, 973–982 (2003).

    Article  Google Scholar 

  2. A. J. Chamkha, A. F. Al-mudhaf, and I. Pop, “Effects of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium,” Int. Commun. Heat Mass Transfer. 33, 1096–1102 (2006).

    Article  Google Scholar 

  3. P. Reineck, C. J. Wienken, and D. Braun, “Thermophoresis of single stranded DNA,” Electrophoresis 31 (2), 279–286 (2010).

    Article  Google Scholar 

  4. R. Kandasamy, I. Muhaimin, and A. B. Khamis, “Thermophoresis and variable viscosity effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of chemical reaction,” J. Heat Mass Transfer 45 (6), 703–712 (2009).

    Article  MATH  Google Scholar 

  5. O. A. Ladyzhenskaya, “Investigation of the Navier–Stokes equation for stationary motion of an incompressible fluid, Usp. Mat. Nauk 14 (3), 75–97 (1959).

    MathSciNet  Google Scholar 

  6. V. O. Bytev, “Invariant solutions of the Navier–Stokes equations,” J. Appl. Mech. Tech. Phys. 13 (6), 809–816 (1972).

    Article  Google Scholar 

  7. K. I. Babenko, “On stationary solutions of the problem of viscous incompressible flow past a body,” Dokl. Akad. Nauk SSSR 210 (2), 294–297 (1973).

    MathSciNet  Google Scholar 

  8. L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math. 35, 771–831 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. Ch. Fefferman, “Existence and smoothness of the Navier–Stokes equation,” (Clay Mathematics Institute, Cambridge, MA, 2000), pp. 1–5. http://claymath.org/millennium/Navier-Stokes Equations.

  10. P. Constantin, “Some open problems and research directions in the mathematical study of fluid dynamics,” in Mathematics Unlimited–2001 and Beyond (Springer, Berlin, 2001), pp. 353–360.

    Google Scholar 

  11. O. A. Ladyzhenskaya, “Sixth problem of the millennium: Navier–Stokes equations, existence, and smoothness,” Russ. Math. Surv. 58 (2), 251–286 (2003).

    Article  MATH  Google Scholar 

  12. D. A. Prokudin, Candidate’s Dissertation in Physics and Mathematics (Kemerovo State Univ., Kemerovo, 2009).

  13. M. Otelbaev, “Existence of a strong solution of the Navier–Stokes equations,” Mat. Zh. 13 (4), 5–101 (2013).

    MATH  Google Scholar 

  14. S. Bretsznajder, Wlasnosci Gazow i Cieczy (Wydawnictwo Naukowo-Techniczne, Warsaw, 1962).

    Google Scholar 

  15. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).

    Google Scholar 

  16. V. I. Naidenov, “Steady flow of a viscous incompressible fluid taking temperature dependence of viscosity into account,” J. Appl. Math. Mech. 38 (1), 144–148 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. V. Glushak, N. V. Malai, and N. N. Mironova, “Solution of a boundary value problem for the velocity-linearized Navier–Stokes equations in the case of nonisothermal gas flow past a heated spheroid,” Zh. Vychisl. Mat. Mat. Fiz. 52 (5), 946–959 (2012).

    Google Scholar 

  18. N. V. Malai, A. V. Limanskaya, and E. R. Shchukin, “Solution of a boundary value problem for the Navier–Stokes equations linearized with respect to velocity: Nonisothermal flow of a gaseous medium past a uniformly heated sphere,” Differ. Equations 51 (10), 1319–1329 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. N. V. Malai, A. V. Glushak, and A. V. Limanskaya, “Investigation of boundary-value problem for slow flow of a sphere by viscous nonisothermal gas,” Russ. Math. 60 (12), 43–53 (2016).

    Article  MATH  Google Scholar 

  20. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice Hall, Englewood Cliffs, N.J., 1965).

    MATH  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).

  22. E. Kamke, Gewohnliche Differentialgleichungen (Akademie-Verlag, Leipzig, 1959).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Malai, A. V. Glushak or E. R. Shchukin.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malai, N.V., Glushak, A.V. & Shchukin, E.R. Solution of a Boundary Value Problem for Velocity-Linearized Navier–Stokes Equations in the Case of a Heated Spherical Solid Particle Settling in Fluid. Comput. Math. and Math. Phys. 58, 1132–1141 (2018). https://doi.org/10.1134/S0965542518070114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518070114

Keywords:

Navigation