Advertisement

Theoretical and Numerical Analysis of an Initial-Boundary Value Problem for the Radiative Transfer Equation with Fresnel Matching Conditions

  • A. Kim
  • I. V. Prokhorov
Article
  • 14 Downloads

Abstract

A Cauchy problem for the time-dependent radiative transfer equation in a three-dimensional multicomponent medium with generalized matching conditions describing Fresnel reflection and refraction at the interface of the media is considered. The unique solvability of the problem is proven, a Monte Carlo method for solving the initial-boundary value problem is developed, and computational experiments for different implementations of the algorithm are conducted.

Keywords

integro-differential equations time-dependent equations Cauchy problem Fresnel matching conditions Monte Carlo methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Vladimirov, “Mathematical problems of the uniform-speed theory of transport,” Tr. Mat. Inst. im. V.A. Steklov Akad. Nauk SSSR 61, 3–158 (1961).MathSciNetGoogle Scholar
  2. 2.
    S. B. Shikhov, “Some problems in the mathematical theory of the critical state of a reactor,” USSR Comput. Math. Math. Phys. 7 (1), 147–146 (1967).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Yu. A. Kuznetsov and S. F. Morozov, “Well-posed formulation of a mixed problem for the nonstationary transport equation,” Differ. Uravn. 8 (9), 1639–1648 (1972).MathSciNetGoogle Scholar
  4. 4.
    C. Cercignani, Theory and Application of the Boltzmann Equation (Elsevier, New York, 1975).zbMATHGoogle Scholar
  5. 5.
    V. M. Novikov and S. B. Shikhov, Theory of Parametric Effect on Neutron Transport (Energoizdat, Moscow, 1982) [in Russian].Google Scholar
  6. 6.
    J. Voigt, “Positivity in time dependent linear transport theory,” Acta Appl. Math. 2, 311–331 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    T. A. Germogenova, Local Properties of Solutions to the Transport Equation (Nauka, Moscow, 1986) [in Russian].zbMATHGoogle Scholar
  8. 8.
    V. I. Agoshkov, Boundary Value Problems for Transport Equations (Birkhäuser, Boston, MA, 1998).CrossRefzbMATHGoogle Scholar
  9. 9.
    I. V. Prokhorov, “Boundary value problem of radiation transfer in an inhomogeneous medium with reflection conditions on the boundary,” Differ. Equations 36 (6), 943–948 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    I. V. Prokhorov, “On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces,” Izv. Math. 67 (6), 1243–1266 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    I. V. Prokhorov, “On the structure of the continuity set of the solution to a boundary-value problem for the radiation transfer equation,” Math. Notes 86 (2), 234–248 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. E. Kovtanyuk and I. V. Prokhorov, “A boundary-value problem for the polarized-radiation transfer equation with Fresnel interface conditions for a layered medium,” J. Comput. Appl. Math. 235 (8), 2006–2014 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    I. V. Prokhorov, “Solvability of the initial-boundary value problem for an integrodifferential equation,” Sib. Math. J. 53 (2), 301–309 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    I. V. Prokhorov, “The Cauchy problem for the radiative transfer equation with generalized conjugation conditions,” Comput. Math. Math. Phys. 53 (5), 588–600 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. A. Amosov, “Boundary value problem for the radiation transfer equation with reflection and refraction conditions,” J. Math. Sci. 191 (2), 101–149 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. A. Amosov, “Boundary value problem for the radiation transfer equation with diffuse reflection and refraction conditions,” J. Math. Sci. 193 (2), 151–176 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    I. V. Prokhorov and A. A. Sushchenko, “On the well-posedness of the Cauchy problem for the equation of radiative transfer with Fresnel matching conditions,” Sib. Math. J. 56 (4), 736–745 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. Amosov and M. Shumarov, “Boundary value problem for radiation transfer equation in multilayered medium with reflection and refraction conditions,” Appl. Anal. 95 (7), 1581–1597 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. A. Amosov, “Radiative transfer equation with Fresnel reflection and refraction conditions in a system of bodies with piecewise smooth boundaries,” J. Math. Sci. 219 (6), 3–29 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    I. V. Prokhorov, A. A. Sushchenko, and A. Kim, “Initial boundary value problem for the radiative transfer equation with diffusion matching conditions,” J. Appl. Ind. Math. 11 (1), 115–124 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    V. S. Kuznetsov, O. V. Nikolaeva, L. P. Bass, A. V. Bykov, and A. V. Priezzhev, “Modeling of ultrashort light pulse propagation in strongly scattering medium,” Math. Models Comput. Simul. 2 (1), 22–32 (2010).CrossRefGoogle Scholar
  22. 22.
    L. G. Sokoletsky, V. P. Budak, F. Shen, and A. A. Kokhanovsky, “Comparative analysis of radiative transfer approaches for calculation of plane transmittance and diffuse attenuation coefficient of plane-parallel light scattering layers,” Appl. Opt. 53 (3), 459–468 (2014).CrossRefGoogle Scholar
  23. 23.
    V. P. Budak, V. S. Zheltov, A. V. Lubenchenko, K. S. Freidlin, and O. V. Shagalov, “A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium,” Atmos. Ocean. Opt. 30 (1), 70–78 (2017).CrossRefGoogle Scholar
  24. 24.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., The Monte Carlo Methods in Atmospheric Optics (Nauka, Novosibirsk, 1976; Springer-Verlag, Berlin, 1980).CrossRefGoogle Scholar
  25. 25.
    S. M. Prigarin, “Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds,” Atmos. Ocean. Opt. 30 (1), 79–83 (2017).CrossRefGoogle Scholar
  26. 26.
    G. A. Mikhailov and I. N. Medvedev, Optimization of Weighted Algorithms for Statistical Simulation (Omega Print, Vladivostok, 2011).Google Scholar
  27. 27.
    D. M. O’Brien, “Monte Carlo integration of the radiative transfer equation in a scattering medium with stochastic reflecting boundary,” J. Quant. Spectrosc. Radiat. Transfer 60 (4), 573–583 (1998).CrossRefGoogle Scholar
  28. 28.
    V. A. Debelov, G. G. Smirnova, and L. F. Vasilyeva, “An extension of the light meshes method for three-dimensional scenes with semitransparent surfaces,” Program. Comput. Software 34 (5), 271–278 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    G. Bal, A. B. Davis, and I. Langmore, “A hybrid (Monte Carlo/deterministic) approach for multi-dimensional radiation transport,” J. Comput. Phys. 230 (30), 7723–7735 (2011).CrossRefzbMATHGoogle Scholar
  30. 30.
    D. D. Zhdanov, A. A. Garbul, I. S. Potemin, A. G. Voloboy, V. A. Galaktionov, S. V. Ershov, and V. G. Sokolov, “Photorealistic volume scattering model in the bidirectional stochastic ray tracing problem,” Program. Comput. Software 41 (5), 295–301 (2015).MathSciNetCrossRefGoogle Scholar
  31. 31.
    W. Zhen, C. Shengcheng, Y. Jun, G. Haiyang, L. Chao, and Z. Zhibo, “A novel hybrid scattering order-dependent variance reduction method for Monte Carlo simulations of radiative transfer in cloudy atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 189, 283–302 (2017).CrossRefGoogle Scholar
  32. 32.
    I. N. Medvedev and G. A. Mikhailov, “Study of weighted Monte Carlo algorithms with branching,” Comput. Math. Math. Phys. 49 (3), 428–438 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    I. V. Prokhorov and A. S. Zhuplev, “On the efficiency of the maximum cross section method in radiation transport theory,” Comput. Res. Model. 5 (4), 573–582 (2013).Google Scholar
  34. 34.
    A. Kim and I. V. Prokhorov, “Monte Carlo method for nonstationary radiative transfer equation in inhomogeneous media, Proc. Int. Soc. Opt. Eng. 10035, 100350Z (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Applied Mathematics, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations