Mathematical and Numerical Simulation of Equilibrium of an Elastic Body Reinforced by a Thin Elastic Inclusion

  • N. A. Kazarinov
  • E. M. Rudoy
  • V. Yu. Slesarenko
  • V. V. Shcherbakov


A boundary value problem describing the equilibrium of a two-dimensional linear elastic body with a thin rectilinear elastic inclusion and possible delamination is considered. The stress and strain state of the inclusion is described using the equations of the Euler–Bernoulli beam theory. Delamination means the existence of a crack between the inclusion and the elastic matrix. Nonlinear boundary conditions preventing crack face interpenetration are imposed on the crack faces. As a result, problem with an unknown contact domain is obtained. The problem is solved numerically by applying an iterative algorithm based on the domain decomposition method and an Uzawa-type algorithm for solving variational inequalities. Numerical results illustrating the efficiency of the proposed algorithm are presented.


thin elastic inclusion delamination crack nonpenetration condition variational inequality domain decomposition method Uzawa algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Khludnev and M. Negri, “Crack on the boundary of a thin elastic inclusion inside an elastic body,” Z. Angew. Math. Mech. 92 (5), 341–354 (2012).CrossRefzbMATHGoogle Scholar
  2. 2.
    A. M. Khludnev and G. Leugering, “Delaminated thin elastic inclusion inside elastic bodies,” Math. Mech. Complex Syst. 2 (1), 1–21 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    H. Itou and A. M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies,” Math. Methods Appl. Sci. 39 (17), 4980–4993 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. M. Khludnev and G. Leugering, “On elastic bodies with thin rigid inclusions and cracks,” Math. Methods Appl. Sci. 33 (16), 1955–1967 (2010).MathSciNetzbMATHGoogle Scholar
  5. 5.
    V. Shcherbakov, “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions,” Z. Angew. Math. Phys. 68, Article 26 (2017).Google Scholar
  6. 6.
    E. Barbieri and N. M. Pugno, “A computational model for large deformations of composites with a 2D soft matrix and 1D anticracks,” Int. J. Solids Struct. 77, 1–14 (2015).CrossRefGoogle Scholar
  7. 7.
    L. G. S. Leite and W. S. Venturini, “Accurate modeling of rigid and soft inclusions in 2D elastic solids by the boundary element method,” Comput. Struct. 84 (29–30), 1874–1881 (2006).CrossRefGoogle Scholar
  8. 8.
    E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion,” J. Appl. Ind. Math. 10 (2), 264–276 (2016).MathSciNetCrossRefGoogle Scholar
  9. 9.
    E. M. Rudoy and V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion,” Sib. Electron. Math. Rep. 13, 395–410 (2016).MathSciNetzbMATHGoogle Scholar
  10. 10.
    E. M. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity,” Z. Angew. Math. Phys. 68, Article 19 (2017).Google Scholar
  11. 11.
    V. D. Korneev and V. M. Sveshnikov, “Parallel algorithms and domain decomposition techniques for solving three-dimensional boundary value problems on quasi-structured grids,” Numer. Anal. Appl. 9 (2), 141–149 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yu. M. Laevskii and A. M. Matsokin, “Decomposition methods for the solution of elliptic and parabolic boundary value problems,” Sib. Zh. Vychisl. Mat. 2 (4), 361–372 (1999).Google Scholar
  13. 13.
    A. V. Rukavishnikov, “Domain decomposition method and numerical analysis of a fluid dynamics problem,” Comput. Math. Math. Phys. 54 (9), 1459–1480 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    V. M. Sveshnikov, “Domain decomposition method in problems of high-current electronics,” Sib. Zh. Ind. Mat. 18 (2), 124–130 (2015).MathSciNetzbMATHGoogle Scholar
  15. 15.
    T. K. Dobroserdova and M. A. Olshanskii, “A finite element solver and energy stable coupling for 3D and 1D fluid models,” Comput. Method. Appl. M 259, 166–176 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J. Koko, “Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows,” J. Sci. Comput. 26 (2), 195–215 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    G. P. Astrakhantsev, “Domain decomposition method for the problem of bending heterogeneous plate,” Comput. Math. Math. Phys. 38 (10), 1686–1694 (1998).MathSciNetzbMATHGoogle Scholar
  18. 18.
    G. Bayada, J. Sabil, and T. Sassi, “Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with nonlocal Coulomb’s friction law,” ESAIM-Math. Model. Numer. 42 (2), 243–262 (2008).CrossRefzbMATHGoogle Scholar
  19. 19.
    J. Danek, I. Hlavácek, and J. Nedoma, “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity,” Math. Comput. Simul. 68, 271–300 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    E. M. Rudoy, “Domain Decomposition method for crack problems with nonpenetration condition,” ESAIMMath. Model. Numer. 50 (4), 995–1009 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    E. M. Rudoy, N. A. Kazarinov, and V. Yu. Slesarenko, “Numerical simulation of equilibrium of an elastic twolayer structure with a through crack,” Numer. Anal. Appl. 10 (1), 63–73 (2017).MathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Hintermüller, V. Kovtunenko, and K. Kunisch, “The primal-dual active set method for a crack problem with non-penetration,” IMA J. Appl. Math. 69 (1), 1–26 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. Hintermüller, K. Ito, and K. Kunisch, “The primal-dual active set strategy as a semismooth Newton method,” SIAM J. Optim. 13 (2), 865–888 (2003).MathSciNetzbMATHGoogle Scholar
  24. 24.
    V. A. Kovtunenko, “Numerical simulation of the non-linear crack problem with nonpenetration,” Math. Methods Appl. Sci. 27 (2), 163–179 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    S. R. Eugster, Geometric Continuum Mechanics and Induced Beam Theories (Springer, New York, 2015).CrossRefzbMATHGoogle Scholar
  26. 26.
    A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids (WIT, Southampton, 2000).Google Scholar
  27. 27.
    J. Céa, Optimisation: Théorie Et Algorithmes (Dunod, Paris, 1971).zbMATHGoogle Scholar
  28. 28.
    E. M. Rudoy, “Domain decomposition method for a model crack problem with a possible contact of crack edges,” Comput. Math. Math. Phys. 55 (2), 305–306 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    I. Ekeland and R. Temam, Convex Analysis and Variational Problems (SIAM, Philadelphia, 1999).CrossRefzbMATHGoogle Scholar
  30. 30.
    P. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1977).Google Scholar
  31. 31.
    G. Allaire, Numerical Analysis and Optimization: An Introduction to Mathematical Modeling and Numerical Simulation (Oxford University Press, Oxford, 2007).zbMATHGoogle Scholar
  32. 32.
    A. M. Khludnev and V. V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler–Bernoulli inclusions,” Math. Mech. Solids 22 (11), 2180–2195 (2017).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Kazarinov
    • 1
  • E. M. Rudoy
    • 1
    • 2
  • V. Yu. Slesarenko
    • 1
  • V. V. Shcherbakov
    • 1
    • 2
  1. 1.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations