Skip to main content
Log in

Kinetic Model and Magnetogasdynamics Equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An original kinetic model for the molecular velocity distribution function is considered. Based on this model, the equations of ideal magnetogasdynamics (MGD) are derived and an original model for dissipative MGD is obtained. The latter model can be used to construct algorithms easily adaptable to high-performance computer architectures. As an example, results of high-performance computations of astrophysical phenomena are presented, namely, the formation of cosmic jets is modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Chetverushkin, “Kinetic models for solving continuum mechanics problems on supercomputers,” Math. Models Comput. Simul. 7 (6), 531–539 (2015).

    Article  MathSciNet  Google Scholar 

  2. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations (MAKS, Moscow, 2004; CIMNE, Barcelona, 2008).

    MATH  Google Scholar 

  3. N. D’Ascenzo, V. I. Saveliev, and B. N. Chetverushkin, “On an algorithm for solving parabolic and elliptic equations,” Comput. Math. Math. Phys. 55 (8), 1290–1297 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. N. Chetverushkin, N. D’Ascenzo, A. V. Saveliev, and V. I. Saveliev, “Simulation of astrophysical phenomena on the basis of high-performance computations,” Dokl. Math. 95 (1), 68–71 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. N. Kogan, Rarefied Gas Dynamics (Nauka, Moscow, 1967; Plenum, New York, 1969)

    Book  Google Scholar 

  6. L. Boltzmann, Lectures on Gas Theory (Dover, New York, 1995).

    Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1988; Butterworth-Heinemann, Oxford, 2000).

    MATH  Google Scholar 

  8. B. Chetverushkin, N. D’Ascenzo, S. Ishanov, and V. Saveliev, “Hyperbolic type explicit kinetic scheme of magneto gas dynamics for high performance computing systems,” Russ. J. Numer. Anal. Math. Model. 30 (1), 27–36 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. N. Chetverushkin and V. I. Saveliev, Preprint No. 79, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2015).

  10. P. J. Dellar, “Lattice kinetic schemes for magnetohydrodynamics,” J. Comput. Phys. 179 (1), 95 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Xu and X. He, “Lattice Boltzmann method and gas-kinetic BGK scheme in the low-mach number viscous flow simulations,” J. Comput. Phys. 190 (1), 100 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  12. J.-P. Croisille, R. Khanfir, and G. Chanteur, “Numerical simulation of the MHD equations by kinetic-type method,” J. Sci. Comput. 10 (1), 81 (1995).

    Article  MATH  Google Scholar 

  13. A. A. Zlotnik and B. N. Chetverushkin, “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them,” Comput. Math. Math. Phys. 48 (3), 420–446 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. N. Chetverushkin, N. D’Ascenzo, A. V. Saveliev, and V. I. Saveliev, “A kinetic model for magnetogasdynamics,” Math. Models Comput. Simul. 9 (5), 544–553 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. N. Chetverushkin, “Hyperbolic system in magnetogasdynamics,” Mat. Model. (2018) (in press).

    Google Scholar 

  16. B. N. Chetverushkin and A. V. Gulin, “Explicit schemes and numerical simulation using ultrahigh-performance computer systems,” Dokl. Math. 86 (2), 681–683 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1976; Marcel Dekker, New York, 2001).

    Book  MATH  Google Scholar 

  18. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman and Hall/CRC, London, 2001; Fizmatlit, Moscow, 2012).

    MATH  Google Scholar 

  19. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  20. V. E. Fortov, Physics of High Energy Densities (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  21. Ya. B. Zel’dovich, S. I. Blinnikov, and N. I. Shakura, Physical Principles of the Structure and Evolution of Stars (Mosk. Gos. Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  22. M. A. Abramowicz, G. Björnsson, and J. E. Pringle, Theory of Black Hole Accretion Discs (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  23. www.nasa.gov/chandra

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Chetverushkin.

Additional information

Original Russian Text © B.N. Chetverushkin, N. D’Ascenzo, A.V. Saveliev, V.I. Saveliev, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 5, pp. 716–725.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverushkin, B.N., D’Ascenzo, N., Saveliev, A.V. et al. Kinetic Model and Magnetogasdynamics Equations. Comput. Math. and Math. Phys. 58, 691–699 (2018). https://doi.org/10.1134/S0965542518050068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518050068

Keywords

Navigation