Compactons and Riemann Waves of an Extended Modified Korteweg–de Vries Equation with Nonlinear Dispersion

  • S. P. Popov


The K(f m , g n ) equation is studied, which generalizes the modified Korteweg–de Vries equation K(u3, u1) and the Rosenau–Hyman equation K(u m , u n ) to other dependences of nonlinearity and dispersion on the solution. The considered functions f(u) and g(u) can be linear or can have the form of a smoothed step. It is found numerically that, depending on the form of nonlinearity and dispersion, the given equation has compacton and kovaton solutions, Riemann-wave solutions, and oscillating wave packets of two types. It is shown that the interaction between solutions of all found types occurs with the preservation of their parameters.


KdV equation mKdV equation K(m, n) equation Rosenau–Hyman equation K(cos) equation the Rosenau–Pikovsky equation compacton kovaton soliton kink Riemann wave oscillatory waves wave packets multisoliton interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. K. Dodd, J. C. Eilbeck, J. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1984).zbMATHGoogle Scholar
  2. 2.
    V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and the Atmosphere (Energoatomizdat, Moscow, 1989) [in Russian].zbMATHGoogle Scholar
  3. 3.
    V. G. Makhan’kov, “Solitons and numerical experiment,” Sov. J. Part. Nucl. 14, 50–75 (1983).MathSciNetGoogle Scholar
  4. 4.
    T. I. Belova and A. E. Kudryavtsev, “Solitons and their interactions in classical field theory,” Usp. Fiz. Nauk 167 (4), 377–406 (1997).CrossRefGoogle Scholar
  5. 5.
    V. E. Zakharov, “On the stochastization of one-dimensional chains of nonlinear oscillators,” Zh. Eksp. Teor. Fiz. 65 (1(7)), 219–225 (1973).Google Scholar
  6. 6.
    E. G. Ekomasov, R. R. Murtazin, O. B. Bogomazova, and A. M. Gumerov, “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange,” J. Magn. Magn. Mater. 339, 133–137 (2013).CrossRefGoogle Scholar
  7. 7.
    M. A. Shamsutdinov, D. M. Shamsutdinov, and E. G. Ekomasov, “Dynamics of domain walls in orthorhombic antiferromagnets near the critical velocity,” Phys. Metals Metallogr. 96 (4), 361–367 (2003).Google Scholar
  8. 8.
    H. Leblond and D. Mihalache, “Optical solitons in the few-cycle regime: Recent theoretical results,” Roman. Rep. Phys. 63, 1254–1266 (2011).Google Scholar
  9. 9.
    P. Rosenau and J. M. Hyman, “Compactons: Solitons with finite wavelengths,” Phys. Rev. Lett. 70 (5), 564–567 (1993).CrossRefzbMATHGoogle Scholar
  10. 10.
    F. Cooper, J. M. Hyman, and A. Khare, “Compacton solutions in a class of generalized fifth-order Korteweg–De Vries equations,” Phys. Rev. E 64 (2), 1–5 (2001).CrossRefGoogle Scholar
  11. 11.
    P. Rosenau and D. Levy, “Compactons in a class of nonlinearly quintic equations,” Phys. Lett. A 252, 297–306 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. Rosenau, “Nonlinear dispersion and compact structures,” Phys. Rev. Lett. 73 (13), 1737–1741 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P. Rosenau, “On nonanalytic solitary waves formed by a nonlinear dispersion,” Phys. Lett. A 230 (5–6), 305–318 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    P. Rosenau, “On a class of nonlinear dispersive-dissipative interactions,” Physica D 230 (5–6), 535–546 (1998).MathSciNetzbMATHGoogle Scholar
  15. 15.
    P. Rosenau, “Compact and noncompact dispersive structures,” Phys. Lett. A 275 (3), 193–203 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J. Garralon and F. R. Villatoro, “Numerical evaluation of compactons and kovatons of the K(cos) Rosenau–Pikovsky equation,” Math. Comput. Model. 55 (7–8), 1858–1865 (2012).CrossRefzbMATHGoogle Scholar
  17. 17.
    J. Garralon, F. Rus, and F. R. Villatoro, “Numerical interactions between compactons and kovatons of the Rosenau–Pikovsky K(cos) equation,” Commun. Nonlinear Sci. Numer. Simul. 18 (7), 1576–1588 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J. de Frutos, M. A. López-Marcos, and J. M. Sanz-Serna, “A finite difference scheme for the K(2, 2) compacton equation,” J. Comput. Phys. 120 (2), 248–252 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    P. Saucez, A. Vande Wouwer, and P. A. Zegeling, “Adaptive method of lines solutions for the extended fifthorder Korteweg–De Vries,” J. Comput. Appl. Math. 183 (2), 343–357 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    F. Rus and F. R. Villatoro, “Padé numerical method for the Rosenau–Hyman compacton equation,” Math. Comput. Simul. 76 (1), 188–192 (2007).CrossRefzbMATHGoogle Scholar
  21. 21.
    J. Garralon, F. Rus, and F. R. Villatoro, “Removing trailing tails and delays induced by artificial dissipation in Padé numerical schemes for stable compacton collisions,” Appl. Math. Comput. 220, 185–192 (2013).MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. Chertock and D. Levy, “Particle methods for dispersive equations,” J. Comput. Phys. 171 (2), 708–730 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. M. Sanz-Serna and I. Christie, “Petrov–Galerkin methods for nonlinear dispersive waves,” J. Comput. Phys. 39 (1), 94–102 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    D. Levy, C.-W. Shu, and J. Yan, “Local discontinuous Galerkin methods for nonlinear dispersive equations,” J. Comput. Phys. 196 (2), 751–772 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    F. Rus and F. Villatoro, “Radiation in numerical compactons from finite element methods,” Proceedings of the 8th WSEAS International Conference on Applied Mathematics, Tenerife, Spain, December 16–18, 2005, pp. 19–24.Google Scholar
  26. 26.
    S. P. Popov, “Application of the quasi-spectral Fourier method to soliton equations,” Comput. Math. Math. Phys. 50 (12), 2064–2070 (2010).MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. P. Popov, “Numerical analysis of soliton solutions of the modified Korteweg–de Vries-sine-Gordon equation,” Comput. Math. Math. Phys. 55 (3), 437–446 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    S. P. Popov, “Soliton solutions to generalized discrete Korteweg–de Vries equations,” Comput. Math. Math. Phys. 48 (9), 1658–1668 (2008).MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. P. Popov, “Numerical simulation of solitons in simple two-dimensional lattices,” Mat. Model. 21 (9), 27–33 (2009).zbMATHGoogle Scholar
  30. 30.
    S. P. Popov, “Limiting solitons and kinks in two-dimensional discrete systems,” Comput. Math. Math. Phys. 53 (5), 625–631 (2013).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”Russian Academy of SciencesMoscowRussia

Personalised recommendations