Skip to main content
Log in

Iterative Approximate Factorization of Difference Operators of High-Order Accurate Bicompact Schemes for Multidimensional Nonhomogeneous Quasilinear Hyperbolic Systems

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For solving equations of multidimensional bicompact schemes, an iterative method based on approximate factorization of their difference operators is proposed. The method is constructed in the general case of systems of two- and three-dimensional quasilinear nonhomogeneous hyperbolic equations. The unconditional convergence of the method is proved as applied to the two-dimensional scalar linear advection equation with a source term depending only on time and space variables. By computing test problems, it is shown that the new iterative method performs much faster than Newton’s method and preserves a high order of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. J. Stoker, Water Waves: The Mathematical Theory with Applications (Wiley, New York, 1992).

    Book  MATH  Google Scholar 

  2. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1999).

    Book  MATH  Google Scholar 

  3. R. Brun, Introduction to Reactive Gas Dynamics (Oxford Univ. Press, Oxford, New York, 2009).

    Book  MATH  Google Scholar 

  4. C. Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).

    Book  MATH  Google Scholar 

  5. J. Glimm, “The continuous structure of discontinuities,” Lect. Notes Phys. 344, 177–186 (1986).

    MathSciNet  MATH  Google Scholar 

  6. M. Renardy, W. J. Hrusa, and J. A. Nohel, Mathematical Problems in Viscoelasticity (Longman Sci. Tech., Essex, New York, 1987).

    MATH  Google Scholar 

  7. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman and Hall/CRC, London, 2001; Fizmatlit, Moscow, 2012).

    MATH  Google Scholar 

  8. A. S. Kholodov, “Numerical methods for solving hyperbolic equations and systems,” in Encyclopedia of Low-Temperature Plasmas (Yanus-K, Moscow, 2008), Vol. VII-1, Part 2, pp. 141–174 [in Russian].

    Google Scholar 

  9. M. N. Mikhailovskaya and B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations,” Comput. Math. Math. Phys. 52 (4), 578–600 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. B. V. Rogov, “High-order accurate running compact scheme for multidimensional hyperbolic equations,” Dokl. Math. 86 (1), 582–586 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations,” Comput. Math. Math. Phys. 53 (2), 205–214 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  13. W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (Springer, Berlin, 2003).

    Book  MATH  Google Scholar 

  14. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

    MATH  Google Scholar 

  15. N. N. Yanenko, The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables (Nauka, Novosibirsk, 1967; Springer-Verlag, Berlin, 1971).

    MATH  Google Scholar 

  16. H. Holden, K. H. Karlsen, K.-A. Lie, and N. H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions (Eur. Math. Soc., Zurich, 2010).

    Book  MATH  Google Scholar 

  17. P. N. Vabishchevich, Additive Operator-Difference Schemes: Splitting Schemes (De Gruyter, Berlin, 2014).

    MATH  Google Scholar 

  18. Q. Sheng, “Solving linear partial differential equations by exponential splitting,” IMA J. Numer. Anal. 9 (2), 199–212 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  19. Q. Sheng, “ADI methods,” Encyclopedia of Applied and Computational Mathematics (Springer, Berlin, 2015), pp. 25–33.

    Chapter  Google Scholar 

  20. S. Blanes and F. Casas, “On the necessity of negative coefficients for operator splitting schemes of order higher than two,” Appl. Numer. Math. 54 (1), 23–37 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration (CRC, London, 2016).

    Book  MATH  Google Scholar 

  22. P. J. Van der Houwen and B. P. Sommeijer, “Approximate factorization for time-dependent partial differential equations,” J. Comput. Appl. Math. 128 (1–2), 447–466 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Geiser, Iterative Splitting Methods for Differential Equations (CRC, London, 2011).

    Book  MATH  Google Scholar 

  24. L. M. Skvortsov, “Diagonally implicit FSAL Runge–Kutta methods for stiff and differential algebraic systems,” Mat. Model. 14 (2), 3–17 (2002).

    MathSciNet  MATH  Google Scholar 

  25. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009).

    Book  MATH  Google Scholar 

  26. M. D. Bragin and B. V. Rogov, “Minimal dissipation hybrid bicompact schemes for hyperbolic equations,” Comput. Math. Math. Phys. 56 (6), 947–961 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Bragin.

Additional information

Original Russian Text © M.D. Bragin, B.V. Rogov, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 3, pp. 365–382.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, M.D., Rogov, B.V. Iterative Approximate Factorization of Difference Operators of High-Order Accurate Bicompact Schemes for Multidimensional Nonhomogeneous Quasilinear Hyperbolic Systems. Comput. Math. and Math. Phys. 58, 295–306 (2018). https://doi.org/10.1134/S096554251803003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554251803003X

Keywords

Navigation